Yu Beihang, Chang Boyce S, Loo Whitney S, Dhuey Scott, O'Reilly Padraic, Ashby Paul D, Connolly Michael D, Tikhomirov Grigory, Zuckermann Ronald N, Ruiz Ricardo
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Prizker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
ACS Nano. 2024 Mar 12;18(10):7411-7423. doi: 10.1021/acsnano.3c10204. Epub 2024 Feb 27.
The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.
控制和操纵半导体/生物界面的能力对于实现生物纳米制造途径和生物电子器件至关重要。传统的表面功能化方法,如自组装单分子层(SAMs),为这些界面提供的定制有限。聚合物刷提供了更广泛的化学性质选择,但同时与光刻图案化和生物系统保持兼容的选择却很少。在这里,我们开发了一类受生物启发、序列定义的聚合物,即聚肽,作为用于半导体衬底表面改性的定制聚合物刷。设计并合成了具有末端羟基(-OH)基团的聚肽,用于高效地熔融接枝到硅衬底的原生氧化层上,形成超薄(约1nm)单分子层。通过对单体化学进行编程,我们的聚肽刷平台提供了多功能的表面改性,包括调整表面能、钝化、优先生物分子附着和特定生物分子结合。重要的是,聚肽刷单分子层与电子束光刻图案化保持兼容,即使在苛刻的光刻条件下也能保持其化学特性。利用电子束光刻技术在聚肽刷上生成具有高度精确的二元纳米级图案,这些图案具有局部功能,可用于将生物大分子,如DNA折纸或链霉亲和素,选择性固定(或钝化)到可寻址阵列上。这种采用受生物启发、序列定义的聚肽刷的表面改性策略能够在单体化学和序列的大参数空间内对表面性质进行单体水平的控制,因此是一个用于精确设计生物电子应用的半导体/生物界面的高度通用平台。