School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, United Kingdom.
Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):13006-13017. doi: 10.1021/acsami.3c16134. Epub 2024 Feb 27.
Organs-on-chips (OoCs) support an organotypic human cell culture . Precise representation of basement membranes (BMs) is critical for mimicking physiological functions of tissue interfaces. Artificial membranes in polyester (PES) and polycarbonate (PC) commonly used in models and OoCs do not replicate the characteristics of the natural BMs, such as submicrometric thickness, selective permeability, and elasticity. This study introduces porous poly(d,l-lactic acid) (PDLLA) nanofilms for replicating BMs in models and demonstrates their integration into microfluidic chips. Using roll-to-roll gravure coating and polymer phase separation, we fabricated transparent ∼200 nm thick PDLLA films. These nanofilms are 60 times thinner and 27 times more elastic than PES membranes and show uniformly distributed pores of controlled diameter (0.4 to 1.6 μm), which favor cell compartmentalization and exchange of large water-soluble molecules. Human umbilical vein endothelial cells (HUVECs) on PDLLA nanofilms stretched across microchannels exhibited 97% viability, enhanced adhesion, and a higher proliferation rate compared to their performance on PES membranes and glass substrates. After 5 days of culture, HUVECs formed a functional barrier on suspended PDLLA nanofilms, confirmed by a more than 10-fold increase in transendothelial electrical resistance and blocked 150 kDa dextran diffusion. When integrated between two microfluidic channels and exposed to physiological shear stress, despite their ultrathin thickness, PDLLA nanofilms upheld their integrity and efficiently maintained separation of the channels. The successful formation of an adherent endothelium and the coculture of HUVECs and human astrocytes on either side of the suspended nanofilm validate it as an artificial BM for OoCs. Its submicrometric thickness guarantees intimate contact, a key feature to mimic the blood-brain barrier and to study paracrine signaling between the two cell types. In summary, porous PDLLA nanofilms hold the potential for improving the accuracy and physiological relevance of the OoC as models and drug discovery tools.
器官芯片(Organs-on-chips,OoCs)支持器官型人细胞培养。精确模拟基底膜(Basement Membranes,BMs)对于模拟组织界面的生理功能至关重要。聚酯(Polyester,PES)和聚碳酸酯(Polycarbonate,PC)等常用于模型和 OoCs 的人工膜无法复制天然 BMs 的特性,如亚微米级厚度、选择性渗透性和弹性。本研究介绍了用于在模型中复制 BMs 的多孔聚(D,L-乳酸)(Poly(d,l-lactic acid),PDLLA)纳米膜,并展示了它们在微流控芯片中的集成。我们使用辊到辊凹版涂布和聚合物相分离技术制造了透明的约 200nm 厚的 PDLLA 薄膜。这些纳米膜比 PES 膜薄 60 倍,弹性高 27 倍,并且具有均匀分布的受控直径(0.4 至 1.6μm)的孔,有利于细胞分隔和大水溶性分子的交换。与人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cells,HUVECs)在 PDLLA 纳米膜上横跨微通道伸展时,与在 PES 膜和玻璃基板上的表现相比,显示出 97%的活力、增强的黏附和更高的增殖率。在培养 5 天后,HUVECs 在悬浮的 PDLLA 纳米膜上形成了功能屏障,这通过跨内皮电阻的增加超过 10 倍和阻止 150kDa 葡聚糖扩散得到证实。当集成在两个微流控通道之间并暴露于生理剪切应力下时,尽管其超薄厚度,PDLLA 纳米膜仍保持其完整性,并有效地维持通道的分离。在悬浮纳米膜的任一侧成功形成了黏附的内皮细胞,并进行了 HUVECs 和人星形胶质细胞的共培养,验证了它作为 OoC 的人工 BM。其亚微米级厚度保证了紧密接触,这是模拟血脑屏障和研究两种细胞类型之间旁分泌信号的关键特征。总之,多孔 PDLLA 纳米膜具有提高 OoC 作为模型和药物发现工具的准确性和生理相关性的潜力。