Suppr超能文献

对临床评估进行大规模筛查,以区分综合HD进展模型(IHDPM)中的不同状态。

Large-scale screening of clinical assessments to distinguish between states in the Integrated HD Progression Model (IHDPM).

作者信息

Sun Zhaonan, Ware Jennifer, Dey Sanjoy, Eyigoz Elif, Sathe Swati, Sampaio Cristina, Hu Jianying

机构信息

IBM Research, Yorktown Heights, NY, United States.

CHDI Management, Inc., Princeton, NJ, United States.

出版信息

Front Aging Neurosci. 2024 Feb 13;16:1320755. doi: 10.3389/fnagi.2024.1320755. eCollection 2024.

Abstract

BACKGROUND

Understanding the sensitivity and utility of clinical assessments across different HD stages is important for study/trial endpoint selection and clinical assessment development. The Integrated HD Progression Model (IHDPM) characterizes the complex symptom progression of HD and separates the disease into nine ordered disease states.

OBJECTIVE

To generate a temporal map of discriminatory clinical measures across the IHDPM states.

METHODS

We applied the IHDPM to all HD individuals in an integrated longitudinal HD dataset derived from four observational studies, obtaining disease state assignment for each study visit. Using large-scale screening, we estimated Cohen's effect sizes to rank the discriminative power of 2,472 clinical measures for separating observations in disease state pairs. Individual trajectories through IHDPM states were examined. Discriminative analyses were limited to individuals with observations in both states of the pairs compared ( = 3,790).

RESULTS

Discriminative clinical measures were heterogeneous across the HD life course. UHDRS items were frequently identified as the best state pair discriminators, with UHDRS Motor items - most notably TMS - showing the highest discriminatory power between the early-disease states and early post-transition period states. UHDRS functional items emerged as strong discriminators from the transition period and on. Cognitive assessments showed good discriminative power between all state pairs examined, excepting state 1 vs. 2. Several non-UHDRS assessments were also flagged as excellent state discriminators for specific disease phases (e.g., SF-12). For certain state pairs, single assessment items other than total/summary scores were highlighted as having excellent discriminative power.

CONCLUSION

By providing ranked quantitative scores indicating discriminatory ability of thousands of clinical measures between specific pairs of IHDPM states, our results will aid clinical trial designers select the most effective outcome measures tailored to their study cohort. Our observations may also assist in the development of end points targeting specific phases in the disease life course, through providing specific conceptual foci.

摘要

背景

了解不同亨廷顿舞蹈病(HD)阶段临床评估的敏感性和实用性对于研究/试验终点选择和临床评估发展非常重要。综合HD进展模型(IHDPM)描述了HD复杂的症状进展,并将疾病分为九个有序的疾病状态。

目的

生成跨越IHDPM状态的鉴别性临床指标的时间图谱。

方法

我们将IHDPM应用于来自四项观察性研究的综合纵向HD数据集中的所有HD个体,为每次研究访视获得疾病状态分配。通过大规模筛查,我们估计了科恩效应量,以对2472项临床指标区分疾病状态对中观察值的鉴别力进行排名。检查了个体在IHDPM状态中的轨迹。鉴别分析仅限于在比较的状态对中都有观察值的个体(n = 3790)。

结果

鉴别性临床指标在HD病程中具有异质性。统一亨廷顿舞蹈病评定量表(UHDRS)项目经常被确定为最佳的状态对鉴别指标,其中UHDRS运动项目——最显著的是定时运动评分(TMS)——在疾病早期状态和早期转换后状态之间显示出最高的鉴别力。UHDRS功能项目从转换期及之后成为强大的鉴别指标。认知评估在所有检查的状态对之间显示出良好的鉴别力,但状态1与状态2除外。一些非UHDRS评估也被标记为特定疾病阶段的优秀状态鉴别指标(例如,简短健康调查简表12项,SF-12)。对于某些状态对,除总分/汇总分数外的单个评估项目被突出显示为具有出色的鉴别力。

结论

通过提供表明数千项临床指标在特定IHDPM状态对之间鉴别能力的排名定量分数,我们的结果将帮助临床试验设计者选择最适合其研究队列的有效结局指标。我们的观察结果还可能通过提供特定的概念焦点,协助开发针对疾病病程中特定阶段的终点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1b/10896990/933b9a877e58/fnagi-16-1320755-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验