Suppr超能文献

一种概率性疾病进展建模方法及其在亨廷顿舞蹈症综合观测数据中的应用。

A probabilistic disease progression modeling approach and its application to integrated Huntington's disease observational data.

作者信息

Sun Zhaonan, Ghosh Soumya, Li Ying, Cheng Yu, Mohan Amrita, Sampaio Cristina, Hu Jianying

机构信息

Center for Computational Health, IBM T. J. Watson Research Center, 1101 Route 134 Kitchawan Rd, Yorktown Heights, New York 10598, USA.

CHDI Management/CHDI Foundation, 155 Village Boulevard, Suite 200, Princeton, New Jersey 08540, USA.

出版信息

JAMIA Open. 2019 Jan 7;2(1):123-130. doi: 10.1093/jamiaopen/ooy060. eCollection 2019 Apr.

Abstract

OBJECTIVE

Chronic diseases often have long durations with slow, nonlinear progression and complex, and multifaceted manifestation. Modeling the progression of chronic diseases based on observational studies is challenging. We developed a framework to address these challenges by building probabilistic disease progression models to enable better understanding of chronic diseases and provide insights that could lead to better disease management.

MATERIALS AND METHODS

We developed a framework to build probabilistic disease progression models using observational medical data. The framework consists of two steps. The first step determines the number of disease states. The second step builds a probabilistic disease progression model with the determined number of states. The model discovers typical states along the trajectory of the target disease, learns the characteristics of these states, and transition probabilities between the states. We applied the framework to an integrated observational HD dataset curated from four recent observational HD studies.

RESULTS

The resulting HD progression model identified nine disease states. Compared to state-of-art HD staging system, the model 1) covers wider range of HD progression; 2) is able to quantitatively describe complex changes around the time of clinical diagnosis; 3) discovers multiple potential HD progression pathways; and 4) reveals expected time durations of the identified states.

DISCUSSION AND CONCLUSION

The proposed framework addresses practical challenges in observational data and can help enhance the understanding of progression of chronic diseases. The framework could be applied to other chronic diseases with the help of clinical knowledge.

摘要

目的

慢性病通常病程较长,进展缓慢且非线性,表现复杂且多方面。基于观察性研究对慢性病进展进行建模具有挑战性。我们开发了一个框架来应对这些挑战,通过构建概率性疾病进展模型,以更好地理解慢性病并提供可能有助于改善疾病管理的见解。

材料与方法

我们开发了一个使用观察性医学数据构建概率性疾病进展模型的框架。该框架由两个步骤组成。第一步确定疾病状态的数量。第二步构建具有确定状态数量的概率性疾病进展模型。该模型发现目标疾病轨迹上的典型状态,了解这些状态的特征以及状态之间的转移概率。我们将该框架应用于从最近四项观察性HD研究中整理出的综合观察性HD数据集。

结果

所得的HD进展模型确定了九个疾病状态。与现有HD分期系统相比,该模型1)涵盖更广泛的HD进展范围;2)能够定量描述临床诊断前后的复杂变化;3)发现多种潜在的HD进展途径;4)揭示所确定状态的预期持续时间。

讨论与结论

所提出的框架解决了观察性数据中的实际挑战,并有助于增强对慢性病进展的理解。借助临床知识,该框架可应用于其他慢性病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d6/6951948/a6a16486c51d/ooy060f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验