The Arabic Preprint Server (ArabiXiv), Paris, France.
Semin Ophthalmol. 2024 Jul;39(5):400-403. doi: 10.1080/08820538.2024.2322428. Epub 2024 Feb 28.
The Journal Impact Factor (JIF) is a widely used metric for ranking journals based on the number of citations garnered by papers published over a specific timeframe. To assess the accuracy of JIF values, I compared citation counts for 30 of my own publications across six major bibliography databases: CrossRef, Web of Science, Publisher records, Google Scholar, PubMed and Scopus. The analysis revealed noteworthy variations in citation counts, ranging from 10% to over 50% between the lowest and highest citation counts. Google Scholar records the highest citation numbers, while PubMed reported the lowest. Notably, Web of Science, whose citation data are used in JIF calculations, tend to underestimate citation counts compared to other databases. These observations raise concerns about the accuracy of JIF calculation based on Web of Science's citation data. The real JIF values for most journals would differ from those annually reported by Clarivate's journal citation reports (JCR). These citation discrepancies underscore the importance of comprehensive data collection and the necessity to include additional citation sources. Not because a paper is cited in one journal rather than another should it have a less or more citation weight. Ultimately, one citation remains one citation, regardless of its origin. Clarivate Analytics may thus need to consider integrating all citation sources for more accurate JIF values. Alternatively, Google Scholar could potentially develop its own journal or citation impact based on its extensive journal citation records. However, while making adjustments to how the Journal Impact Factor is calculated can make it more mathematically precise, it doesn't address the fundamental biases built into the metric. Even with refinements, the Journal Impact Factor will remain skewed due to how it's defined and used.
期刊影响因子(JIF)是一种广泛用于根据特定时间段内发表的论文被引用次数对期刊进行排名的指标。为了评估 JIF 值的准确性,我比较了我自己的 30 篇论文在六个主要书目数据库中的引用次数:CrossRef、Web of Science、出版商记录、Google Scholar、PubMed 和 Scopus。分析显示,引用次数存在显著差异,最低和最高引用次数之间的差异高达 10%到 50%以上。Google Scholar 记录的引用数量最高,而 PubMed 报告的引用数量最低。值得注意的是,Web of Science 的引文数据被用于 JIF 计算,与其他数据库相比,它往往低估了引文数量。这些观察结果引发了对基于 Web of Science 引文数据计算 JIF 准确性的担忧。大多数期刊的实际 JIF 值与 Clarivate 的期刊引文报告(JCR)每年报告的 JIF 值不同。这些引文差异突出了全面数据收集的重要性,以及有必要纳入额外的引文来源。一篇论文不应因其在一个期刊而不是另一个期刊被引用,就赋予其较少或更多的引用权重。最终,无论其来源如何,一个引述仍然是一个引述。因此,Clarivate Analytics 可能需要考虑整合所有引文来源,以获得更准确的 JIF 值。或者,Google Scholar 可以根据其广泛的期刊引文记录,开发自己的期刊或引文影响力。然而,尽管对期刊影响因子的计算方法进行调整可以使其在数学上更加精确,但它并不能解决该指标中内置的基本偏差。即使进行了改进,由于期刊影响因子的定义和使用方式,它仍将存在偏差。