Suppr超能文献

机器学习分析中国城市臭氧污染的社会经济驱动因素。

Machine learning analysis of socioeconomic drivers in urban ozone pollution in Chinese cities.

机构信息

Research Center of Machine Learning and Environment Science, China Three Gorges University, Yichang, 443002, Hubei, China.

Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.

出版信息

Environ Monit Assess. 2024 Feb 28;196(3):314. doi: 10.1007/s10661-024-12489-2.

Abstract

The escalation of ground-level ozone (O) pollution presents a significant challenge to the sustainable growth of Chinese cities. This study utilizes advanced machine learning algorithms to investigate the intricate interplay between urban socioeconomic growth and O levels. Surpassing traditional environmental chemistry, it assesses the effectiveness of these algorithms in interpreting socioeconomic and environmental data, while elucidating urban development's environmental impacts from a novel socioeconomic perspective. Key findings indicate that factors such as urban infrastructure, industrial activities, and demographic dynamics significantly influence O pollution. The study highlights the particular sensitivity of urban public transportation and population density, each exerting a unique and substantial effect on O levels. Additionally, the research identifies nuanced interactions among these factors, indicating a complex web of influences on urban O pollution. These interactions suggest that the impact of individual socioeconomic elements on O pollution is interdependent, being either amplified or mitigated by other factors. The study emphasizes the crucial need to integrate socioeconomic variables into urban O pollution strategies, advocating for policies tailored to each city's distinct characteristics, informed by the detailed analysis provided by machine learning. This approach is essential for developing effective and nuanced urban pollution management strategies.

摘要

地面臭氧(O)污染的升级给中国城市的可持续发展带来了重大挑战。本研究利用先进的机器学习算法来探究城市社会经济增长与 O 水平之间的复杂相互作用。超越传统的环境化学,它评估了这些算法在解释社会经济和环境数据方面的有效性,同时从新的社会经济角度阐明了城市发展对环境的影响。主要发现表明,城市基础设施、工业活动和人口动态等因素对 O 污染有重大影响。研究强调了城市公共交通和人口密度的特殊敏感性,它们对 O 水平产生独特而重大的影响。此外,研究还确定了这些因素之间的细微相互作用,表明城市 O 污染存在复杂的相互影响。这些相互作用表明,个别社会经济因素对 O 污染的影响是相互依存的,受到其他因素的放大或缓解。该研究强调了将社会经济变量纳入城市 O 污染策略的重要性,倡导根据机器学习提供的详细分析,为每个城市的独特特征制定有针对性的政策,以制定有效的、细致入微的城市污染管理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验