Conte Luana, Amodeo Ilaria, De Nunzio Giorgio, Raffaeli Genny, Borzani Irene, Persico Nicola, Griggio Alice, Como Giuseppe, Cascio Donato, Colnaghi Mariarosa, Mosca Fabio, Cavallaro Giacomo
Department of Mathematics and Physics "E. De Giorgi", Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy.
Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Local Health Authority (ASL) Lecce and Università del Salento, Lecce, Italy.
Eur J Pediatr. 2024 May;183(5):2285-2300. doi: 10.1007/s00431-024-05476-9. Epub 2024 Feb 28.
Prenatal assessment of lung size and liver position is essential to stratify congenital diaphragmatic hernia (CDH) fetuses in risk categories, guiding counseling, and patient management. Manual segmentation on fetal MRI provides a quantitative estimation of total lung volume and liver herniation. However, it is time-consuming and operator-dependent. In this study, we utilized a publicly available deep learning (DL) segmentation system (nnU-Net) to automatically contour CDH-affected fetal lungs and liver on MRI sections. Concordance between automatic and manual segmentation was assessed by calculating the Jaccard coefficient. Pyradiomics standard features were then extracted from both manually and automatically segmented regions. The reproducibility of features between the two groups was evaluated through the Wilcoxon rank-sum test and intraclass correlation coefficients (ICCs). We finally tested the reliability of the automatic-segmentation approach by building a ML classifier system for the prediction of liver herniation based on support vector machines (SVM) and trained on shape features computed both in the manual and nnU-Net-segmented organs. We compared the area under the classifier receiver operating characteristic curve (AUC) in the two cases. Pyradiomics features calculated in the manual ROIs were partly reproducible by the same features calculated in nnU-Net segmented ROIs and, when used in the ML procedure, to predict liver herniation (both AUC around 0.85). Conclusion: Our results suggest that automatic MRI segmentation is feasible, with good reproducibility of pyradiomics features, and that a ML system for liver herniation prediction offers good reliability. Trial registration: https://clinicaltrials.gov/ct2/show/NCT04609163?term=NCT04609163&draw=2&rank=1 ; Clinical Trial Identification no. NCT04609163. What is Known: • Magnetic resonance imaging (MRI) is crucial for prenatal congenital diaphragmatic hernia (CDH) assessment. It enables the quantification of the total lung volume and the extent of liver herniation, which are essential for stratifying the severity of CDH, guiding counseling, and patient management. • The manual segmentation of MRI scans is a time-consuming process that is heavily reliant upon the skill set of the operator. What is New: • MRI lung and liver automatic segmentation using the deep learning nnU-Net system is feasible, with good Jaccard coefficient values and satisfactory reproducibility of pyradiomics features compared to manual results. • A feasible ML system for predicting liver herniation could improve prenatal assessments and CDH patient management.
产前评估肺大小和肝脏位置对于将先天性膈疝(CDH)胎儿分层到风险类别、指导咨询和患者管理至关重要。胎儿MRI上的手动分割可提供肺总体积和肝脏疝入的定量估计。然而,这既耗时又依赖操作人员。在本研究中,我们利用一个公开可用的深度学习(DL)分割系统(nnU-Net)在MRI切片上自动勾勒受CDH影响的胎儿肺和肝脏轮廓。通过计算杰卡德系数评估自动分割和手动分割之间的一致性。然后从手动和自动分割区域中提取放射组学标准特征。通过威尔科克森秩和检验和组内相关系数(ICC)评估两组特征之间的可重复性。我们最终通过构建基于支持向量机(SVM)的用于预测肝脏疝入的机器学习分类器系统并在手动和nnU-Net分割器官中计算的形状特征上进行训练,来测试自动分割方法的可靠性。我们比较了两种情况下分类器接收器操作特征曲线(AUC)下的面积。在手动感兴趣区域(ROI)中计算的放射组学特征在nnU-Net分割的ROI中计算的相同特征部分可重复,并且在机器学习过程中用于预测肝脏疝入(两个AUC均约为0.85)。结论:我们的结果表明,MRI自动分割是可行的,放射组学特征具有良好的可重复性,并且用于预测肝脏疝入的机器学习系统具有良好的可靠性。试验注册:https://clinicaltrials.gov/ct2/show/NCT04609163?term=NCT04609163&draw=2&rank=1;临床试验识别号NCT04609163。已知信息:•磁共振成像(MRI)对于产前先天性膈疝(CDH)评估至关重要。它能够量化肺总体积和肝脏疝入程度,这对于分层CDH严重程度、指导咨询和患者管理必不可少。•MRI扫描的手动分割是一个耗时的过程,严重依赖操作人员的技能。新发现:•使用深度学习nnU-Net系统进行MRI肺和肝脏自动分割是可行的,与手动结果相比,杰卡德系数值良好,放射组学特征的可重复性令人满意。•一种用于预测肝脏疝入的可行机器学习系统可以改善产前评估和CDH患者管理。