Kandukuri Bhargavi, Das Supriya, Mudadla Umamaheswara Rao, Madras Giridhar, Thatikonda Shashidhar, Challapalli Subrahmanyam
Department of Chemistry, Indian Institute of Technology Hyderabad, Telangana, 502 285, India.
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502 285, India.
Environ Sci Pollut Res Int. 2024 Feb 28. doi: 10.1007/s11356-024-32569-7.
The present work studied the decomposition of isopropyl alcohol (IPA), widely used in chemical industries and households, in a packed-bed dielectric barrier discharge (DBD) plasma reactor. Metal oxide (MO) coated on γ-AlO (M = Cu, Mn, Co) was utilized for packing. The plasma-packed mode was a likely alternative to the conventional removal techniques, as it aids the conversion of dilute concentrations of IPA to CO and CO at ambient conditions (room temperature and atmospheric pressure). The mean electron energy calculations suggest that electrons with higher energy are generated when the discharge zone is packed with catalysts. When comparing IPA conversion (input concentration of 25 ppm) for no packing mode and MO/γ-AlO coupled plasma mode, the latter method enhances conversion to greater than 90% at an applied voltage of 18 kV. Also, MO/γ-AlO showed the highest selectivity to CO (70%) compared to plasma-only mode (45%). The metal-oxide layer provides the necessary catalytic surface facilitating the oxidation of IPA to CO through active oxygen species or the interaction of surface hydroxyl groups. The use of MO/γ-AlO resulted in about 90% carbon balance and reduced ozone generation, demonstrating the significance of integrating metal oxide to achieve efficient conversion and maximal selectivity towards the desired products.
本研究工作在填充床介质阻挡放电(DBD)等离子体反应器中,对化学工业和家庭中广泛使用的异丙醇(IPA)的分解进行了研究。采用涂覆在γ - AlO上的金属氧化物(MO,M = Cu、Mn、Co)进行填充。等离子体填充模式可能是传统去除技术的一种替代方法,因为它有助于在环境条件(室温及大气压)下将稀浓度的IPA转化为CO和CO。平均电子能量计算表明,当放电区填充有催化剂时会产生能量更高的电子。在比较无填充模式和MO/γ - AlO耦合等离子体模式下的IPA转化率(输入浓度为25 ppm)时,后一种方法在18 kV的施加电压下可将转化率提高到90%以上。此外,与仅等离子体模式(45%)相比,MO/γ - AlO对CO的选择性最高(70%)。金属氧化物层提供了必要的催化表面,通过活性氧物种或表面羟基的相互作用促进IPA氧化为CO。使用MO/γ - AlO实现了约90%的碳平衡并减少了臭氧生成,证明了整合金属氧化物以实现高效转化和对所需产物的最大选择性的重要性。