State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China, 361005.
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China, 325035.
Nano Lett. 2024 Mar 13;24(10):3082-3088. doi: 10.1021/acs.nanolett.3c04870. Epub 2024 Feb 28.
The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0°-360°) and polar angles (0°-90°) with errors of less than 2° on the experimental and simulated data under S/N of ∼4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.
在单粒子追踪 (SPT) 实验中,各向异性光学纳米探针的平移和旋转动力学揭示了细胞活动的分子水平信息。在这里,我们报告了一种自动化高速多维 SPT 系统,该系统与深度学习算法相结合,可在具有高定位精度(<10nm)和时间分辨率(0.9ms)的活细胞中追踪各向异性金纳米颗粒探针的 3D 取向,克服了在低信噪比 (S/N) 条件下旋转跟踪的局限性。该方法可以在 S/N 约为 4 时,以小于 2°的误差解析实验和模拟数据的方位角(0°-360°)和极角(0°-90°)。即使 S/N 接近 1 的极限,该方法在鲁棒性和抗噪性方面仍优于传统的模式匹配方法。通过研究活细胞内沿微管运输的货物的运动,展示了这种多维 SPT 系统的实用性。