Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA.
Cell Rep. 2024 Mar 26;43(3):113867. doi: 10.1016/j.celrep.2024.113867. Epub 2024 Feb 27.
Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.
患有威廉姆斯综合征(WS)的个体,由于 7q11.23 处的 26-28 个基因的半合子缺失而导致神经发育障碍,其表现出明显的高社交表型。这些基因中的一个基因,GTF2I 的拷贝数变异和突变与社交行为改变有关,并被提议作为 WS 中高社交行为的基础。然而,GTF2I 对人类神经发育的贡献仍知之甚少。在这里,我们使用包括神经祖细胞、神经元和三维皮质类器官在内的神经发育人类细胞模型,从 CRISPR-Cas9 编辑的 GTF2I 敲除(GTF2I-KO)多能干细胞分化而来,以研究 GTF2I 在人类神经发育中的作用。GTF2I-KO 祖细胞表现出增殖增加和细胞周期改变。皮质类器官和神经元表现出增加的细胞死亡和突触失调,包括突触结构功能障碍和在多电极阵列上的电生理活性降低。我们的研究结果表明,突触回路完整性的变化可能是 GTF2I 改变与人类社交行为表型表达变化之间联系的主要介导因素。