School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
Cell Rep. 2024 Mar 26;43(3):113861. doi: 10.1016/j.celrep.2024.113861. Epub 2024 Feb 27.
Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.
遗传性代谢紊乱是一组遗传疾病,可导致严重的神经损伤和儿童死亡。这些疾病的独特之处在于它们对饮食治疗有反应;然而,由于疾病的患病率低,以及缺乏合适的饮食测试模式,这种选择在很大程度上仍未得到探索。在这里,我们筛选了 35 种果蝇氨基酸代谢紊乱模型,以研究疾病与饮食的相互作用,发现其中 26 种模型的发育和/或存活受到饮食的影响。我们使用靶向多营养数组,在亚硫酸氧化酶缺乏症(一种婴儿致死性疾病)的模型中研究了这种相互作用。我们发现,饮食中半胱氨酸的消耗可以使它们的代谢谱正常化,并挽救其发育、神经生理学、行为和终生的果蝇存活,从而为进一步研究该疾病相关的致病机制提供了基础。我们的工作强调了代谢紊乱的饮食敏感性,并确立了果蝇作为营养基因组学研究的有价值工具,为潜在的饮食治疗提供信息。