Suppr超能文献

1 型糖尿病患者非结构化自由运动时段的在线分类。

Online Classification of Unstructured Free-Living Exercise Sessions in People with Type 1 Diabetes.

机构信息

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, USA.

Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.

出版信息

Diabetes Technol Ther. 2024 Oct;26(10):709-719. doi: 10.1089/dia.2023.0528. Epub 2024 May 24.

Abstract

Managing exercise in type 1 diabetes is challenging, in part, because different types of exercises can have diverging effects on glycemia. The aim of this work was to develop a classification model that can classify an exercise event (structured or unstructured) as aerobic, interval, or resistance for the purpose of incorporation into an automated insulin delivery (AID) system. A long short-term memory network model was developed with real-world data from 30-min structured sessions of at-home exercise (aerobic, resistance, or mixed) using triaxial accelerometer, heart rate, and activity duration information. The detection algorithm was used to classify 15 common free-living and unstructured activities and relate each to exercise-associated change in glucose. A total of 1610 structured exercise sessions were used to train, validate, and test the model. The accuracy for the structured exercise sessions in the testing set was 72% for , 65% for , and 77% for . In addition, we tested the classifier on 3328 unstructured sessions. We validated the session-associated change in glucose against the expected change during exercise for each type. Mean and standard deviation of the change in glucose of -20.8 (40.3) mg/dL were achieved for sessions classified as , -16.2 (39.0) mg/dL for sessions classified as , and -11.6 (38.8) mg/dL for sessions classified as . The proposed algorithm reliably identified physical activity associated with expected change in glucose, which could be integrated into an AID system to manage the exercise disturbance in glycemia according to the predicted class.

摘要

管理 1 型糖尿病患者的运动是具有挑战性的,部分原因是不同类型的运动可能对血糖产生不同的影响。本研究旨在开发一种分类模型,能够将运动事件(结构化或非结构化)分类为有氧运动、间歇运动或抗阻运动,以便纳入自动化胰岛素输注(AID)系统。我们使用三轴加速度计、心率和活动持续时间信息,从在家进行的 30 分钟结构化运动(有氧运动、抗阻运动或混合运动)的真实世界数据中开发了一个长短期记忆网络模型。该检测算法用于对 15 种常见的自由生活和非结构化活动进行分类,并将每种活动与与运动相关的血糖变化联系起来。共使用 1610 个结构化运动训练、验证和测试模型。测试集中结构化运动的准确率分别为 72%、65%和 77%。此外,我们还在 3328 个非结构化会话中测试了分类器。我们根据每种类型的运动期间的预期变化,验证了与会话相关的血糖变化。被分类为有氧运动的会话中,血糖变化的平均值和标准差分别为-20.8(40.3)mg/dL;被分类为抗阻运动的会话中,血糖变化的平均值和标准差分别为-16.2(39.0)mg/dL;被分类为间歇运动的会话中,血糖变化的平均值和标准差分别为-11.6(38.8)mg/dL。所提出的算法可靠地识别出与预期血糖变化相关的体力活动,这可以整合到 AID 系统中,根据预测的类别来管理血糖紊乱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验