Martin Guillaume Louis, Petri Camille, Rozenberg Julian, Simon Noémie, Hajage David, Kirchgesner Julien, Tubach Florence, Létinier Louis, Dechartres Agnès
Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Paris, France; Synapse Medicine, Bordeaux, France.
UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK.
J Clin Epidemiol. 2024 May;169:111305. doi: 10.1016/j.jclinepi.2024.111305. Epub 2024 Feb 28.
The use of secondary databases has become popular for evaluating the effectiveness and safety of interventions in real-life settings. However, the absence of important confounders in these databases is challenging. To address this issue, the high-dimensional propensity score (hdPS) algorithm was developed in 2009. This algorithm uses proxy variables for mitigating confounding by combining information available across several healthcare dimensions. This study assessed the methodology and reporting of the hdPS in comparative effectiveness and safety research.
In this methodological review, we searched PubMed and Google Scholar from July 2009 to May 2022 for studies that used the hdPS for evaluating the effectiveness or safety of healthcare interventions. Two reviewers independently extracted study characteristics and assessed how the hdPS was applied and reported. Risk of bias was evaluated with the Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) tool.
In total, 136 studies met the inclusion criteria; the median publication year was 2018 (Q1-Q3 2016-2020). The studies included 192 datasets, mostly North American databases (n = 132, 69%). The hdPS was used in primary analysis in 120 studies (88%). Dimensions were defined in 101 studies (74%), with a median of 5 (Q1-Q3 4-6) dimensions included. A median of 500 (Q1-Q3 200-500) empirically identified covariates were selected. Regarding hdPS reporting, only 11 studies (8%) reported all recommended items. Most studies (n = 81, 60%) had a moderate overall risk of bias.
There is room for improvement in the reporting of hdPS studies, especially regarding the transparency of methodological choices that underpin the construction of the hdPS.
利用二次数据库评估现实环境中干预措施的有效性和安全性已变得很普遍。然而,这些数据库中缺少重要混杂因素是一个挑战。为解决这一问题,高维倾向评分(hdPS)算法于2009年被开发出来。该算法通过整合多个医疗维度的可用信息,使用代理变量来减轻混杂。本研究评估了hdPS在比较有效性和安全性研究中的方法和报告情况。
在这项方法学综述中,我们于2009年7月至2022年5月在PubMed和谷歌学术上搜索了使用hdPS评估医疗干预措施有效性或安全性的研究。两名 reviewers 独立提取研究特征,并评估hdPS的应用和报告方式。使用干预性非随机研究的偏倚风险(ROBINS-I)工具评估偏倚风险。
共有136项研究符合纳入标准;中位发表年份为2018年(四分位间距为2016 - 2020年)。这些研究包括192个数据集,大部分是北美数据库(n = 132,69%)。120项研究(88%)在主要分析中使用了hdPS。101项研究(74%)定义了维度,纳入维度的中位数为5(四分位间距为4 - 6)。经实证确定的协变量中位数为500(四分位间距为200 - 500)。关于hdPS报告,只有11项研究(8%)报告了所有推荐项目。大多数研究(n = 81,60%)总体偏倚风险为中度。
hdPS研究的报告有改进空间,特别是在支撑hdPS构建的方法选择的透明度方面。