Suppr超能文献

酵母耐受乙酸、丁酸和辛酸的共同和更具体的遗传决定因素和途径。

Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids.

机构信息

iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.

Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.

出版信息

Microb Cell Fact. 2024 Feb 29;23(1):71. doi: 10.1186/s12934-024-02309-0.

Abstract

BACKGROUND

The improvement of yeast tolerance to acetic, butyric, and octanoic acids is an important step for the implementation of economically and technologically sustainable bioprocesses for the bioconversion of renewable biomass resources and wastes. To guide genome engineering of promising yeast cell factories toward highly robust superior strains, it is instrumental to identify molecular targets and understand the mechanisms underlying tolerance to those monocarboxylic fatty acids. A chemogenomic analysis was performed, complemented with physiological studies, to unveil genetic tolerance determinants in the model yeast and cell factory Saccharomyces cerevisiae exposed to equivalent moderate inhibitory concentrations of acetic, butyric, or octanoic acids.

RESULTS

Results indicate the existence of multiple shared genetic determinants and pathways underlying tolerance to these short- and medium-chain fatty acids, such as vacuolar acidification, intracellular trafficking, autophagy, and protein synthesis. The number of tolerance genes identified increased with the linear chain length and the datasets for butyric and octanoic acids include the highest number of genes in common suggesting the existence of more similar toxicity and tolerance mechanisms. Results of this analysis, at the systems level, point to a more marked deleterious effect of an equivalent inhibitory concentration of the more lipophilic octanoic acid, followed by butyric acid, on the cell envelope and on cellular membranes function and lipid remodeling. The importance of mitochondrial genome maintenance and functional mitochondria to obtain ATP for energy-dependent detoxification processes also emerged from this chemogenomic analysis, especially for octanoic acid.

CONCLUSIONS

This study provides new biological knowledge of interest to gain further mechanistic insights into toxicity and tolerance to linear-chain monocarboxylic acids of increasing liposolubility and reports the first lists of tolerance genes, at the genome scale, for butyric and octanoic acids. These genes and biological functions are potential targets for synthetic biology approaches applied to promising yeast cell factories, toward more robust superior strains, a highly desirable phenotype to increase the economic viability of bioprocesses based on mixtures of volatiles/medium-chain fatty acids derived from low-cost biodegradable substrates or lignocellulose hydrolysates.

摘要

背景

提高酵母对乙酸、丁酸和辛酸的耐受性是实现经济和技术可持续的生物转化可再生生物质资源和废物的生物过程的重要步骤。为了指导有前途的酵母细胞工厂的基因组工程朝着高度稳健的优良菌株方向发展,识别耐受这些单羧酸脂肪酸的分子靶标和理解其机制至关重要。进行了化学基因组分析,并辅以生理学研究,以揭示模型酵母和细胞工厂酿酒酵母在暴露于等效中等抑制浓度的乙酸、丁酸或辛酸时的遗传耐受性决定因素。

结果

结果表明,存在多种共同的遗传决定因素和途径,这些因素和途径是耐受这些短链和中链脂肪酸的基础,例如液泡酸化、细胞内运输、自噬和蛋白质合成。随着线性链长的增加,鉴定出的耐受基因数量增加,丁酸和辛酸的数据集中包含的共同基因数量最多,这表明存在更多类似的毒性和耐受机制。这种分析在系统水平上指出,更亲脂的辛酸对细胞包膜和细胞膜功能以及脂质重塑的等效抑制浓度的破坏性影响更为明显,其次是丁酸。从这个化学基因组分析中还可以看出,线粒体基因组的维持和功能线粒体对于获得用于能量依赖的解毒过程的 ATP 也非常重要,特别是对于辛酸。

结论

这项研究提供了关于线性链单羧酸脂溶性增加的毒性和耐受性的新生物学知识,并报告了第一个用于丁酸和辛酸的基因组规模的耐受基因列表。这些基因和生物学功能是合成生物学方法应用于有前途的酵母细胞工厂的潜在目标,以获得更稳健的优良菌株,这是一种非常理想的表型,可以提高基于挥发性/中链脂肪酸混合物的生物过程的经济可行性,这些脂肪酸混合物来自低成本可生物降解的底物或木质纤维素水解物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a6/10903034/5099034d2373/12934_2024_2309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验