Suppr超能文献

工程改造酿酒酵母脂肪酸组成以提高对辛酸的耐受性。

Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid.

作者信息

Besada-Lombana Pamela B, Fernandez-Moya Ruben, Fenster Jacob, Da Silva Nancy A

机构信息

Department of Chemical Engineering and Materials Science, University of California, Irvine, California.

出版信息

Biotechnol Bioeng. 2017 Jul;114(7):1531-1538. doi: 10.1002/bit.26288. Epub 2017 Apr 18.

Abstract

Biorenewable chemicals such as short and medium chain fatty acids enable functional or direct substitution of petroleum-derived building blocks, allowing reduction of anthropogenic greenhouse gases while meeting market needs of high-demand products like aliphatic alcohols and alpha olefins. However, producing these fatty acids in microorganisms can be challenging due to toxicity issues. Octanoic acid (C8) can disrupt the integrity of the cell membrane in yeast, and exogenous supplementation of oleic acid has been shown to help alleviate this. We recently engineered the Saccharomyces cerevisiae enzyme acetyl-CoA carboxylase by replacing serine residue 1157 with alanine to prevent deactivation by phosphorylation. Expression of Acc1 in S. cerevisiae resulted in an increase in total fatty acid production, with the largest increase for oleic acid. In this study, we evaluated the effect of this modified lipid profile on C8 toxicity to the yeast. Expression of Acc1 in S. cerevisiae BY4741 increased the percentage of oleic acid 3.1- and 1.6-fold in the absence and presence of octanoic acid challenge, respectively. Following exposure to 0.9 mM of C8 for 24 h, the engineered yeast had a 10-fold higher cell density relative to the baseline strain. Moreover, overexpressing Acc1 allowed survival at C8 concentrations that were lethal for the baseline strain. This marked reduction of toxicity was shown to be due to higher membrane integrity as an 11-fold decrease in leakage of intracellular magnesium was observed. Due to the increase in oleic acid, this approach has the potential to reduce toxicity of other valuable bioproducts such as shorter chain aliphatic acids and alcohols and other membrane stressors. In an initial screen, increased resistance to n-butanol, 2-propanol, and hexanoic acid was demonstrated with cell densities 3.2-, 1.8-, and 29-fold higher than the baseline strain, respectively. Biotechnol. Bioeng. 2017;114: 1531-1538. © 2017 Wiley Periodicals, Inc.

摘要

生物可再生化学品,如短链和中链脂肪酸,能够实现对石油衍生结构单元的功能替代或直接替代,在满足高需求产品(如脂肪醇和α-烯烃)市场需求的同时,减少人为温室气体排放。然而,由于毒性问题,在微生物中生产这些脂肪酸具有挑战性。辛酸(C8)会破坏酵母细胞膜的完整性,而外源补充油酸已被证明有助于缓解这一问题。我们最近通过将丝氨酸残基1157替换为丙氨酸,对酿酒酵母中的乙酰辅酶A羧化酶进行了工程改造,以防止其因磷酸化而失活。在酿酒酵母中表达Acc1导致总脂肪酸产量增加,其中油酸增加最多。在本研究中,我们评估了这种改变的脂质谱对C8对酵母毒性的影响。在酿酒酵母BY4741中表达Acc1,在不存在和存在辛酸挑战的情况下,油酸百分比分别增加了3.1倍和1.6倍。在暴露于0.9 mM的C8 24小时后,工程酵母的细胞密度相对于基线菌株高10倍。此外,过表达Acc1使酵母能够在对基线菌株致命的C8浓度下存活。毒性的显著降低被证明是由于更高的膜完整性,因为观察到细胞内镁泄漏减少了11倍。由于油酸的增加,这种方法有可能降低其他有价值的生物产品(如短链脂肪酸和醇类以及其他膜应激源)的毒性。在初步筛选中,对正丁醇、2-丙醇和己酸的抗性增加,细胞密度分别比基线菌株高3.2倍、1.8倍和29倍。《生物技术与生物工程》2017年;114:1531 - 1538。©2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验