Suppr超能文献

基于深度学习的心脏骤停后缺氧缺血性脑病的CT扫描检测:二维和三维方法的比较研究

Deep learning-enabled detection of hypoxic-ischemic encephalopathy after cardiac arrest in CT scans: a comparative study of 2D and 3D approaches.

作者信息

Molinski Noah S, Kenda Martin, Leithner Christoph, Nee Jens, Storm Christian, Scheel Michael, Meddeb Aymen

机构信息

Department for Neuroradiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Front Neurosci. 2024 Feb 14;18:1245791. doi: 10.3389/fnins.2024.1245791. eCollection 2024.

Abstract

OBJECTIVE

To establish a deep learning model for the detection of hypoxic-ischemic encephalopathy (HIE) features on CT scans and to compare various networks to determine the best input data format.

METHODS

168 head CT scans of patients after cardiac arrest were retrospectively identified and classified into two categories: 88 (52.4%) with radiological evidence of severe HIE and 80 (47.6%) without signs of HIE. These images were randomly divided into a training and a test set, and five deep learning models based on based on Densely Connected Convolutional Networks (DenseNet121) were trained and validated using different image input formats (2D and 3D images).

RESULTS

All optimized stacked 2D and 3D networks could detect signs of HIE. The networks based on the data as 2D image data stacks provided the best results ( AUC: 94%, ACC: 79%, AUC: 93%, ACC: 79%). We provide visual explainability data for the decision making of our AI model using Gradient-weighted Class Activation Mapping.

CONCLUSION

Our proof-of-concept deep learning model can accurately identify signs of HIE on CT images. Comparing different 2D- and 3D-based approaches, most promising results were achieved by 2D image stack models. After further clinical validation, a deep learning model of HIE detection based on CT images could be implemented in clinical routine and thus aid clinicians in characterizing imaging data and predicting outcome.

摘要

目的

建立一种深度学习模型,用于在CT扫描上检测缺氧缺血性脑病(HIE)特征,并比较各种网络以确定最佳输入数据格式。

方法

回顾性确定168例心脏骤停后患者的头部CT扫描,并分为两类:88例(52.4%)有严重HIE的放射学证据,80例(47.6%)无HIE迹象。这些图像被随机分为训练集和测试集,并使用不同的图像输入格式(2D和3D图像)对基于密集连接卷积网络(DenseNet121)的五个深度学习模型进行训练和验证。

结果

所有优化的堆叠2D和3D网络都能检测到HIE迹象。基于2D图像数据堆栈的数据网络提供了最佳结果(AUC:94%,ACC:79%,AUC:93%,ACC:79%)。我们使用梯度加权类激活映射为我们的人工智能模型的决策提供视觉可解释性数据。

结论

我们的概念验证深度学习模型可以准确识别CT图像上的HIE迹象。比较不同的基于2D和3D的方法,2D图像堆栈模型取得了最有前景的结果。经过进一步的临床验证,基于CT图像的HIE检测深度学习模型可应用于临床常规,从而帮助临床医生对成像数据进行特征分析和预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/10899383/67a93a85cd9f/fnins-18-1245791-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验