Zhou Jiahui, Ma Wenwen, Mei Yang, Wu Feng, Xie Chen, Wang Ke, Zheng Longhong, Li Li, Chen Renjie
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China.
Small Methods. 2024 Dec;8(12):e2301411. doi: 10.1002/smtd.202301411. Epub 2024 Feb 29.
Aqueous zinc (Zn) ions battery is promising for future large-scale applications of energy storage due to the abundant reserves, high capacity of metallic Zn. However, dendritic growth, severe side reactions have limited the development of Zn-metal anodes. A single skeleton structure or interface protection is difficult to simultaneously mitigate these issues. Here, a novel composite design based on the synergistic interaction between the hydrophobic host, the zincophilic interface is reported. On the one hand, the 3D substrate reduces the local current density, inhibits dendritic growth. On the other hand, the protective interface homogenizes the nucleation due to the formation of the ZnAu alloy layer. More importantly, the collaborative construction of the hydrophobicity, zincophilicity for the electrode alleviates the aggravated hydrogen evolution reaction (only 2.5 mmol h), simultaneously enables a low nucleation overpotential (31.7 mV) during cycling. Consequently, a high Coulombic efficiency of ≈98.25% after 300 cycles is harvested for the composite electrode. The pouch cells assembled by this anode, LiMnO cathode maintain 82 mAh g capacity retention after 140 cycles. This research shows an innovative Zn-based structural design for aqueous Zn-ion batteries.
水系锌离子电池因其锌储量丰富、金属锌容量高,在未来大规模储能应用中具有广阔前景。然而,枝晶生长和严重的副反应限制了锌金属负极的发展。单一的骨架结构或界面保护难以同时缓解这些问题。在此,报道了一种基于疏水主体与亲锌界面协同相互作用的新型复合设计。一方面,三维基底降低了局部电流密度,抑制了枝晶生长。另一方面,由于形成了ZnAu合金层,保护界面使成核均匀化。更重要的是,电极疏水性和亲锌性的协同构建减轻了析氢反应的加剧(仅2.5 mmol h),同时在循环过程中实现了低成核过电位(31.7 mV)。因此,复合电极在300次循环后收获了约98.25%的高库仑效率。由这种负极组装的软包电池,LiMnO正极在140次循环后保持82 mAh g的容量保持率。这项研究展示了一种用于水系锌离子电池的创新型锌基结构设计。