Liu Yahui, Xiao Kuikui, Yang Shuo, Sun Jiangdong, Li Shirui, Liu Xi, Cai Dong, Zhang Yinhang, Nie Huagui, Yang Zhi
Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.
Small. 2024 Jul;20(30):e2309890. doi: 10.1002/smll.202309890. Epub 2024 Feb 29.
Lithium-sulfur (Li-S) battery is of great potential for the next generation energy storage device due to the high specific capacity energy density. However, the sluggish kinetics of S redox and the dendrite Li growth are the main challenges to hinder its commercial application. Herein, an organic electrolyte additive, i.e., benzyl chloride (BzCl), is applied as the remedy to address the two issues. In detail, BzCl can split into Bz· radical to react with the polysulfides, forming a Bz-S-Bz intermediate, which changes the conversion path of S and improves the kinetics by accelerating the S splitting. Meanwhile, a tight and robust solid electrolyte interphase (SEI) rich in inorganic ingredients namely LiCl, LiF, and LiO, is formed on the surface of Li metal, accelerating the ion conductivity and blocking the decomposition of the solvent and lithium polysulfides. Therefore, the Li-S battery with BzCl as the additive remains high capacity of 693.2 mAh g after 220 cycles at 0.5 C with a low decay rate of 0.11%. This work provides a novel strategy to boost the electrochemical performances in both cathode and anode and gives a guide on the electrolyte design toward high-performance Li-S batteries.
锂硫(Li-S)电池因其高比容量能量密度而在下一代储能装置方面具有巨大潜力。然而,硫氧化还原反应动力学缓慢和锂枝晶生长是阻碍其商业应用的主要挑战。在此,一种有机电解质添加剂,即苄基氯(BzCl),被用作解决这两个问题的补救措施。具体而言,BzCl可分解为Bz·自由基与多硫化物反应,形成Bz-S-Bz中间体,这改变了硫的转化路径并通过加速硫的分解来改善动力学。同时,在锂金属表面形成富含无机成分LiCl、LiF和LiO的致密且坚固的固体电解质界面(SEI),加速离子传导并阻止溶剂和多硫化锂的分解。因此,以BzCl为添加剂的锂硫电池在0.5 C下循环220次后仍保持693.2 mAh g的高容量,衰减率低至0.11%。这项工作提供了一种提高正极和负极电化学性能的新策略,并为高性能锂硫电池的电解质设计提供了指导。