Suppr超能文献

非甲羟戊酸途径需要中间体的微妙平衡,以最大限度地提高萜烯产量。

The non-mevalonate pathway requires a delicate balance of intermediates to maximize terpene production.

机构信息

Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA.

出版信息

Appl Microbiol Biotechnol. 2024 Feb 29;108(1):245. doi: 10.1007/s00253-024-13077-7.

Abstract

Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.

摘要

萜类化合物是有价值的工业化学品,其需求越来越多地通过生物工程微生物(如大肠杆菌)来满足。尽管生物工程的努力通常涉及在大肠杆菌中安装甲羟戊酸(MVA)途径来生产萜类化合物,但研究较少的甲基赤藓醇磷酸(MEP)途径是一个更有吸引力的目标,因为它的能量效率更高,理论产量更高,尽管它的调控很严格。在这项研究中,我们将整个 MEP 途径的额外副本整合到大肠杆菌基因组中,以实现稳定、无标记的萜类化合物生产。与基于质粒的系统相比,基因组整合的菌株产生了更多的单萜香叶醇。通过使用不同的启动子来调节途径基因的转录,以香叶醇作为途径通量的报告分子来生产香叶醇。途径基因,包括 dxs、idi 和 ispDF,在中强度启动子的表达下,导致最高的香叶醇产量。定量测定 MEP 途径中间产物表明,最高的香叶醇生产者具有高水平的异戊烯基焦磷酸(IPP)和二甲基烯丙基焦磷酸(DMAPP),但这些两个构建块上游的途径中间产物水平适中。主成分分析表明,途径的第一酶产物 1-脱氧-D-木酮糖 5-磷酸(DXP)对于确定香叶醇滴度至关重要,而 MEP,即 DXP 还原异构酶(Dxr 或 IspC)的产物,是最不重要的。这项工作表明,MEP 途径中间产物的复杂平衡决定了工程大肠杆菌中萜类化合物的产量。本研究中创建的遗传稳定和中间产物平衡的菌株将作为生产各种萜类化合物的底盘。关键点: • 基因组整合的 MEP 途径提供了更高的菌株稳定性 • 基因组整合的 MEP 途径比基于质粒的系统产生了更多的萜类化合物 • 高产单萜需要 MEP 途径中间产物的精细平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/10904526/4a0c50f5e593/253_2024_13077_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验