Suppr超能文献

基于临床和定量脑电图特征构建识别癫痫患者共病焦虑的机器学习模型。

Construction of machine learning models for recognizing comorbid anxiety in epilepsy patients based on their clinical and quantitative EEG features.

机构信息

Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan Province 450003, China.

Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China.

出版信息

Epilepsy Res. 2024 Mar;201:107333. doi: 10.1016/j.eplepsyres.2024.107333. Epub 2024 Feb 28.

Abstract

BACKGROUND

This study aimed to construct prediction models for the recognizing of anxiety disorders (AD) in patients with epilepsy (PWEs) by combining clinical features with quantitative electroencephalogram (qEEG) features and using machine learning (ML).

METHODS

Nineteen clinical features and 20-min resting-state EEG were collected from 71 PWEs comorbid with AD and another 60 PWEs without AD who met the inclusion-exclusion criteria of this study. The EEG were preprocessed and 684 Phase Locking Value (PLV) and 76 Lempel-Ziv Complexity (LZC) features on four bands were extracted. The Fisher score method was used to rank all the derived features. We constructed four models for recognizing AD in PWEs, whether PWEs based on different combinations of features using eXtreme gradient boosting (XGboost) and evaluated these models using the five-fold cross-validation method.

RESULTS

The prediction model constructed by combining the clinical, PLV, and LZC features showed the best performance, with an accuracy of 96.18%, precision of 94.29%, sensitivity of 98.33%, F1-score of 96.06%, and Area Under the Curve (AUC) of 0.96. The Fisher score ranking results displayed that the top ten features were depression, educational attainment, α_P3, α_T6-Pz, α_F7, β_Fp2-O1, θ_T4-Cz, θ_F7-Pz, α_Fp2, and θ_T4-Pz.

CONCLUSIONS

The model, constructed by combining the clinical and qEEG features PLV and LZC, efficiently identified the presence of AD comorbidity in PWEs and might have the potential to complement the clinical diagnosis. Our findings suggest that LZC features in the α band and PLV features in Fp2-O1 may be potential biomarkers for diagnosing AD in PWEs.

摘要

背景

本研究旨在通过结合临床特征与定量脑电图(qEEG)特征,并利用机器学习(ML),构建用于识别癫痫患者(PWEs)伴发焦虑障碍(AD)的预测模型。

方法

纳入符合本研究纳入排除标准的共患 AD 的 71 例 PWE 及无 AD 的 60 例 PWE,采集 19 项临床特征和 20min 静息态 EEG。对 EEG 进行预处理,提取 4 个频段上的 684 个锁相值(PLV)和 76 个勒贝格复杂度(LZC)特征。采用 Fisher 评分法对所有提取的特征进行排序。我们构建了 4 种基于不同特征组合的识别 PWE 伴发 AD 的模型,均使用极端梯度提升(XGboost)算法,并采用 5 折交叉验证方法评估这些模型。

结果

结合临床、PLV 和 LZC 特征构建的预测模型表现最佳,准确率为 96.18%,精确率为 94.29%,灵敏度为 98.33%,F1 评分为 96.06%,曲线下面积(AUC)为 0.96。Fisher 评分排序结果显示,前 10 位特征分别为抑郁、受教育程度、α_P3、α_T6-Pz、α_F7、β_Fp2-O1、θ_T4-Cz、θ_F7-Pz、α_Fp2 和 θ_T4-Pz。

结论

通过结合临床和 qEEG 特征 PLV 和 LZC 构建的模型,能够有效识别 PWE 共患 AD 的情况,可能有助于补充临床诊断。我们的研究结果表明,α 频段的 LZC 特征和 Fp2-O1 的 PLV 特征可能是 PWE 伴发 AD 的潜在生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验