Shah Syed Jalil, Luan Xinqi, Yu Xin, Su Weige, Wang Yucheng, Zhao Zhongxing, Zhao Zhenxia
School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China.
School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China.
J Colloid Interface Sci. 2024 Jun;663:491-507. doi: 10.1016/j.jcis.2024.02.167. Epub 2024 Feb 24.
The development of metal organic framework (MOF)-based π-π conjugated structures capable of effectively transforming HO from humid air to OH radicals for VOCs photodegradation is a significant but difficult task. Herein, an amino-ionic liquid (NH-IL) based dual-mode bridging strategy was proposed to connect 3D-graphene with NH-MIL-125 forming IL-3DGr/NM(Ti) nanohybrids for advanced acetaldehyde photodegradation. The rational integration of these components was responsible for: (1) maintaining π-π conjugated electron transport system; (2) generating abundant coordinatively unsaturated sites and oxygen vacancies; (3) increasing surface area of the nanohybrids. With these attributes, IL-3DGr/NM(Ti) demonstrated enhanced charge separation and transportation electrochemical impedance spectroscopy (EIS): 7-times), acetaldehyde adsorption (22 %), light absorption (bandgap: 1.51 eV). The rapid HO adsorption and photoconversion to OH radicals by IL-3DGr/NM(Ti) enabled it to demonstrate superior CHCHO photodegradation rate under high humidity, surpassing many state-of-the-art photocatalysts by 9 to 187 times under static air conditions and with nearly similar catalyst dosages* (photocatalyst weight and initial acetaldehyde concentration (mg ppm) ratio). Interestingly, the IL-3DGr/NM(Ti) photocatalytic activity was enhanced by increasing RH% up-to 80 %. Besides, the nanohybrids demonstrated tremendous stability, with only a 3.9 % decline observed after 5 consecutive-cycles. This strategy provides new prospects to improve the compatibility of graphene/MOF materials for futuristic photoelectrical applications under high humidity.
开发能够有效将潮湿空气中的HO转化为OH自由基以用于挥发性有机化合物(VOCs)光降解的基于金属有机框架(MOF)的π-π共轭结构是一项重大但困难的任务。在此,提出了一种基于氨基离子液体(NH-IL)的双模式桥接策略,将3D石墨烯与NH-MIL-125连接起来,形成IL-3DGr/NM(Ti)纳米杂化物,用于高级乙醛光降解。这些组分的合理整合导致:(1)维持π-π共轭电子传输系统;(2)产生大量配位不饱和位点和氧空位;(3)增加纳米杂化物的表面积。具有这些特性,IL-3DGr/NM(Ti)在电荷分离和传输方面表现增强(电化学阻抗谱(EIS):7倍)、乙醛吸附(22%)、光吸收(带隙:1.51 eV)。IL-3DGr/NM(Ti)对HO的快速吸附以及将其光转化为OH自由基,使其在高湿度下表现出优异的CHCHO光降解速率,在静态空气条件下且催化剂用量几乎相同(光催化剂重量与初始乙醛浓度(mg ppm)之比)时,比许多先进的光催化剂高出9至187倍。有趣的是,IL-3DGr/NM(Ti)的光催化活性在相对湿度(RH%)提高到80%时增强。此外,该纳米杂化物表现出极大的稳定性,连续5个循环后仅观察到3.9%的下降。该策略为提高石墨烯/MOF材料在高湿度下未来光电应用的兼容性提供了新的前景。