Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, 08500, Vic, Catalonia, Spain.
Enginyeria de Projectes i de la Construcció EPC, Polytechnic University of Catalonia, 08028, Barcelona, Catalonia, Spain.
Sci Data. 2024 Feb 29;11(1):255. doi: 10.1038/s41597-024-03067-9.
With the aim of helping researchers to develop intelligent operation and maintenance strategies, in this manuscript, an extensive 3-years Supervisory Control and Data Acquisition database of five Fuhrländer FL2500 2.5 MW wind turbines is presented. The database contains 312 analogous variables recorded at 5-minute intervals, from 78 different sensors. The reported values for each sensor are minimum, maximum, mean, and standard deviation. The database also contains the alarm events, indicating the system and subsystem and a small description. Finally, a set of functions to download specific subsets of the whole database is freely available in Matlab, R, and Python. To demonstrate the usefulness of this database, an illustrative example is given. In this example, different gearbox variables are selected to estimate a target variable to detect whether or not the estimate differs from the actual value provided for the sensor. By using this normality modelling approach, it is possible to detect rotor malfunction when the estimate differs from the actual measured value.
本手稿介绍了一个广泛的为期 3 年的 Supervisory Control and Data Acquisition 数据库,其中包含了五台 Fuhrländer FL2500 2.5MW 风力涡轮机的数据。该数据库包含了来自 78 个不同传感器的每分钟记录一次的 312 个类似变量。报告的每个传感器的值为最小值、最大值、平均值和标准偏差。该数据库还包含了报警事件,指示系统和子系统以及简要说明。最后,一组用于在 Matlab、R 和 Python 中下载整个数据库的特定子集的功能可免费使用。为了演示该数据库的有用性,给出了一个说明性示例。在此示例中,选择了不同的齿轮箱变量来估计目标变量,以检测估计值是否与传感器提供的实际值不同。通过使用这种正态性建模方法,可以在估计值与实际测量值不同时检测到转子故障。