Suppr超能文献

多中心自动乳腺容积扫描仪的肿瘤内和肿瘤周围放射组学特征用于非侵入性和术前预测乳腺癌 HER2 状态:模型集成研究。

Intra- and peritumoral radiomics features based on multicenter automatic breast volume scanner for noninvasive and preoperative prediction of HER2 status in breast cancer: a model ensemble research.

机构信息

Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.

The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.

出版信息

Sci Rep. 2024 Feb 29;14(1):5020. doi: 10.1038/s41598-024-55838-4.

Abstract

The aim to investigate the predictive efficacy of automatic breast volume scanner (ABVS), clinical and serological features alone or in combination at model level for predicting HER2 status. The model weighted combination method was developed to identify HER2 status compared with single data source model method and feature combination method. 271 patients with invasive breast cancer were included in the retrospective study, of which 174 patients in our center were randomized into the training and validation sets, and 97 patients in the external center were as the test set. Radiomics features extracted from the ABVS-based tumor, peritumoral 3 mm region, and peritumoral 5 mm region and clinical features were used to construct the four types of the optimal single data source models, Tumor, R3mm, R5mm, and Clinical model, respectively. Then, the model weighted combination and feature combination methods were performed to optimize the combination models. The proposed weighted combination models in predicting HER2 status achieved better performance both in validation set and test set. For the validation set, the single data source model, the feature combination model, and the weighted combination model achieved the highest area under the curve (AUC) of 0.803 (95% confidence interval [CI] 0.660-947), 0.739 (CI 0.556,0.921), and 0.826 (95% CI 0.689,0.962), respectively; with the sensitivity and specificity were 100%, 62.5%; 81.8%, 66.7%; 90.9%,75.0%; respectively. For the test set, the single data source model, the feature combination model, and the weighted combination model attained the best AUC of 0.695 (95% CI 0.583, 0.807), 0.668 (95% CI 0.555,0.782), and 0.700 (95% CI 0.590,0.811), respectively; with the sensitivity and specificity were 86.1%, 41.9%; 61.1%, 71.0%; 86.1%, 41.9%; respectively. The model weighted combination was a better method to construct a combination model. The optimized weighted combination models composed of ABVS-based intratumoral and peritumoral radiomics features and clinical features may be potential biomarkers for the noninvasive and preoperative prediction of HER2 status in breast cancer.

摘要

目的 研究自动乳腺容积扫描仪(ABVS)、临床和血清学特征单独或联合建模预测 HER2 状态的预测效能。采用加权组合方法构建模型,与单一数据源模型方法和特征组合方法比较,识别 HER2 状态。回顾性研究纳入 271 例浸润性乳腺癌患者,其中 174 例在本中心随机分为训练集和验证集,97 例在外部中心为测试集。从基于 ABVS 的肿瘤、肿瘤旁 3mm 区和肿瘤旁 5mm 区提取放射组学特征和临床特征,分别构建 4 种最佳的单一数据源模型:肿瘤模型、R3mm 模型、R5mm 模型和临床模型。然后,采用模型加权组合和特征组合方法对组合模型进行优化。提出的加权组合模型在预测 HER2 状态方面在验证集和测试集均取得了更好的性能。对于验证集,单一数据源模型、特征组合模型和加权组合模型的曲线下面积(AUC)最高,分别为 0.803(95%置信区间 [CI]:0.660-947)、0.739(CI:0.556,0.921)和 0.826(95%CI:0.689,0.962),敏感性和特异性分别为 100%、62.5%、81.8%、66.7%、90.9%、75.0%。对于测试集,单一数据源模型、特征组合模型和加权组合模型的 AUC 最佳,分别为 0.695(95%CI:0.583,0.807)、0.668(95%CI:0.555,0.782)和 0.700(95%CI:0.590,0.811),敏感性和特异性分别为 86.1%、41.9%、61.1%、71.0%、86.1%、41.9%。模型加权组合是构建组合模型的更好方法。由基于 ABVS 的肿瘤内和肿瘤旁放射组学特征和临床特征组成的优化加权组合模型可能是乳腺癌 HER2 状态无创和术前预测的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3328/10904744/d7ff60d300b5/41598_2024_55838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验