Suppr超能文献

应用不同人工智能算法对心脏病进行预测的全面综述。

A comprehensive review on heart disease prognostication using different artificial intelligence algorithms.

机构信息

Assistant Professor, IT Francis Xavier Engineering College, Tirunelveli - 627003, India.

Research scholar, Anna University, Chennai, India.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Aug;27(11):1357-1374. doi: 10.1080/10255842.2024.2319706. Epub 2024 Feb 29.

Abstract

Prediction of heart diseases on time is significant in order to preserve life. Many conventional methods have taken efforts on earlier prediction but faced with challenges of higher prediction cost, extended time for computation and complexities with larger volume of data which reduced prediction accuracy. In order to overcome such pitfalls, AI (Artificial Intelligence) technology has been evolved in diagnosing heart diseases through deployment of several ML (Machine Learning) and DL (Deep Learning) algorithms. It improves detection by influencing with its capacity of learning from the massive data containing age, obesity, hypertension and other risk factors of patients and extract it accordingly to differentiate on the circumstances. Moreover, storage of larger data with AI greatly assists in analysing the occurrence of the disease from past historical data. Hence, this paper intends to provide a review on different AI based algorithms used in the heart disease prognostication and delivers its benefits through researching on various existing works. It performs comparative analysis and critical assessment as encompassing accuracies and maximum utilization of algorithms focussed by traditional studies in this area. The major findings of the paper emphasized on the evolution and continuous explorations of AI techniques for heart disease prediction and the future researchers aims in determining the dimensions that have attained high and low prediction accuracies on which appropriate research works can be performed. Finally, future research is included to offer new stimulus for further investigation of AI in cardiac disease diagnosis.

摘要

为了挽救生命,对心脏病进行及时预测意义重大。许多传统方法都在努力进行早期预测,但面临着预测成本更高、计算时间延长以及数据量较大导致预测准确性降低等挑战。为了克服这些困难,人工智能(AI)技术已经通过部署多种机器学习(ML)和深度学习(DL)算法来诊断心脏病。它通过从包含患者年龄、肥胖、高血压和其他风险因素的大量数据中学习的能力来提高检测能力,并相应地提取数据以区分情况。此外,人工智能的大量数据存储极大地有助于从过去的历史数据中分析疾病的发生。因此,本文旨在提供对不同 AI 算法在心脏病预测中的应用的综述,并通过研究各种现有工作来展示其益处。它通过对该领域传统研究关注的算法的准确性和最大利用率进行比较分析和关键评估,来执行分析。本文的主要研究结果强调了 AI 技术在心脏病预测中的不断发展和探索,以及未来研究人员的目标是确定在哪些方面达到了高预测准确性和低预测准确性,以便在这些方面进行适当的研究工作。最后,纳入了未来的研究工作,为 AI 在心脏病诊断中的进一步研究提供了新的动力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验