Halder Sonaldeep, Dey Anish, Shrikhande Chinmay, Maitra Rahul
Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata West Bengal 741246 India.
Chem Sci. 2024 Jan 17;15(9):3279-3289. doi: 10.1039/d3sc05807g. eCollection 2024 Feb 28.
The development of various dynamic ansatz-constructing techniques has ushered in a new era, making the practical exploitation of Noisy Intermediate-Scale Quantum (NISQ) hardware for molecular simulations increasingly viable. However, such ansatz construction protocols incur substantial measurement costs during their execution. This work involves the development of a novel protocol that capitalizes on regenerative machine learning methodologies and many-body perturbation theoretical measures to construct a highly expressive and shallow ansatz within the variational quantum eigensolver (VQE) framework with limited measurement costs. The regenerative machine learning model used in our work is trained with the basis vectors of a low-rank expansion of the -electron Hilbert space to identify the dominant high-rank excited determinants without requiring a large number of quantum measurements. These selected excited determinants are iteratively incorporated within the ansatz through their low-rank decomposition. The reduction in the number of quantum measurements and ansatz depth manifests in the robustness of our method towards hardware noise, as demonstrated through numerical applications. Furthermore, the proposed method is highly compatible with state-of-the-art neural error mitigation techniques. This resource-efficient approach is quintessential for determining spectroscopic and other molecular properties, thereby facilitating the study of emerging chemical phenomena in the near-term quantum computing framework.
各种动态近似构建技术的发展开创了一个新时代,使得利用噪声中等规模量子(NISQ)硬件进行分子模拟在实际应用中越来越可行。然而,这种近似构建协议在执行过程中会产生大量的测量成本。这项工作涉及开发一种新颖的协议,该协议利用再生机器学习方法和多体微扰理论措施,在变分量子本征求解器(VQE)框架内以有限的测量成本构建一个具有高表达能力且浅的近似。我们工作中使用的再生机器学习模型是用N电子希尔伯特空间的低秩展开的基向量进行训练的,以识别占主导地位的高秩激发行列式,而无需大量的量子测量。这些选定的激发行列式通过其低秩分解被迭代地纳入近似中。量子测量次数和近似深度的减少体现在我们的方法对硬件噪声的鲁棒性上,这通过数值应用得到了证明。此外,所提出的方法与最先进的神经误差缓解技术高度兼容。这种资源高效的方法对于确定光谱和其他分子性质至关重要,从而有助于在近期量子计算框架中研究新兴的化学现象。