Suppr超能文献

噪声量子计算和量子误差缓解在“金刚烷领域”的应用:量子化学的基准研究

Applications of noisy quantum computing and quantum error mitigation to "adamantaneland": a benchmarking study for quantum chemistry.

作者信息

Prasad Viki Kumar, Cheng Freeman, Fekl Ulrich, Jacobsen Hans-Arno

机构信息

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,

Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.

出版信息

Phys Chem Chem Phys. 2024 Jan 31;26(5):4071-4082. doi: 10.1039/d3cp03523a.

Abstract

The field of quantum computing has the potential to transform quantum chemistry. The variational quantum eigensolver (VQE) algorithm has allowed quantum computing to be applied to chemical problems in the noisy intermediate-scale quantum (NISQ) era. Applications of VQE have generally focused on predicting absolute energies instead of chemical properties that are relative energy differences and that are most interesting to chemists studying a chemical problem. We address this shortcoming by constructing a molecular benchmark data set in this work containing isomers of CH and carbocationic rearrangements of CH, calculated at a high-level of theory. Using the data set, we compared noiseless VQE simulations to conventionally performed density functional and wavefunction theory-based methods to understand the quality of results. We also investigated the effectiveness of a quantum state tomography-based error mitigation technique in applications of VQE under noise (simulated and real). Our findings reveal that the use of quantum error mitigation is crucial in the NISQ era and advantageous to yield almost noiseless quality results.

摘要

量子计算领域有潜力变革量子化学。变分量子本征求解器(VQE)算法使量子计算能够应用于嘈杂的中尺度量子(NISQ)时代的化学问题。VQE的应用通常集中在预测绝对能量上,而非化学性质,化学性质是相对能量差,对于研究化学问题的化学家来说是最有趣的。在这项工作中,我们通过构建一个包含CH异构体和CH碳正离子重排的分子基准数据集来解决这一缺点,该数据集是在高水平理论下计算得到的。使用该数据集,我们将无噪声的VQE模拟与传统执行的基于密度泛函和波函数理论的方法进行比较,以了解结果的质量。我们还研究了基于量子态层析成像的误差缓解技术在有噪声(模拟和真实)情况下VQE应用中的有效性。我们的研究结果表明,在NISQ时代使用量子误差缓解至关重要,并且有利于产生几乎无噪声质量的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验