Gibson Luke D, Roy Santanu, Khanal Rabi, Chahal Rajni, Sedova Ada, Bryantsev Vyacheslav S
Computational Sciences and Engineering Division, Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge TN 37831 USA.
Chemical Science Division, Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge TN 37831 USA
Chem Sci. 2024 Jan 22;15(9):3116-3129. doi: 10.1039/d3sc06587a. eCollection 2024 Feb 28.
In the dynamic environment of multi-component reactive molten salts, speciation unfolds as a complex process, involving multiple competing reaction pathways that are likely to face free energy barriers before reaching the reaction equilibria. Herein, we unravel intricate speciation in the AlCl-KCl melt compositions with rate theory and molecular dynamics simulations. We find that the compositions with 100 and 50 mol% AlCl exclusively comprise neutral AlCl dimers and charged AlCl monomers, respectively. In intermediate AlCl-KCl compositions, the chemical speciation proves to be a very complex process, requiring over 0.5 nanosecond to reach an equilibrium distribution of multiple species. It is a consequence of the competitive formation and dissociation of additional species, including charged Al dimers, trimers, and tetramers. Here, the species formation occurs through ion exchange events, which we explain by computing free energy landscapes and employing a Marcus-like rate theory. We show that both interspecies and intraspecies ion exchanges are probable and are dictated by the local structural reorganization reflected in the change of local coulombic fields. The species distributions are validated by comparing computed Raman spectra and neutron structure factors with the available experimental data. We find an excellent simulation-experiment agreement in both cases. Nevertheless, Raman spectroscopy turns out to be particularly advantageous for distinguishing between unique species distributions because of the distinct vibrational signatures of different species. The mechanistic insight into reaction dynamics gained in this study will be essential for the advancement of molten salts as reactive media in high-temperature energy applications.
在多组分反应性熔盐的动态环境中,物种形成是一个复杂的过程,涉及多个相互竞争的反应途径,这些途径在达到反应平衡之前可能会面临自由能障碍。在此,我们利用速率理论和分子动力学模拟揭示了AlCl-KCl熔体组成中的复杂物种形成情况。我们发现,分别含有100 mol%和50 mol% AlCl的组成仅包含中性AlCl二聚体和带电AlCl单体。在中间的AlCl-KCl组成中,化学物种形成被证明是一个非常复杂的过程,需要超过0.5纳秒才能达到多种物种的平衡分布。这是包括带电Al二聚体、三聚体和四聚体在内的其他物种竞争形成和解离的结果。在这里,物种形成通过离子交换事件发生,我们通过计算自由能景观并采用类Marcus速率理论对此进行了解释。我们表明,物种间和物种内的离子交换都是可能的,并且由局部库仑场变化所反映的局部结构重组所决定。通过将计算得到的拉曼光谱和中子结构因子与现有实验数据进行比较,验证了物种分布。我们发现两种情况下模拟与实验都有很好的一致性。然而,由于不同物种具有独特的振动特征,拉曼光谱在区分独特的物种分布方面特别有利。本研究中获得的对反应动力学的机理洞察对于将熔盐作为高温能源应用中的反应介质的发展至关重要。