Mathis Déborah, Koch Jasmine, Koller Sophie, Sauter Kay, Flück Christa, Uldry Anne-Christine, Forny Patrick, Froese D Sean, Laemmle Alexander
University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland.
Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Mol Genet Metab Rep. 2024 Feb 23;39:101066. doi: 10.1016/j.ymgmr.2024.101066. eCollection 2024 Jun.
Mitochondrial malate dehydrogenase 2 (MDH2) is crucial to cellular energy generation through direct participation in the tricarboxylic acid (TCA) cycle and the malate aspartate shuttle (MAS). Inherited MDH2 deficiency is an ultra-rare metabolic disease caused by bi-allelic pathogenic variants in the gene, resulting in early-onset encephalopathy, psychomotor delay, muscular hypotonia and frequent seizures. Currently, there is no cure for this devastating disease. We recently reported symptomatic improvement of a three-year-old girl with MDH2 deficiency following treatment with the triglyceride triheptanoin. Here, we aimed to better characterize this disease and improve our understanding of the potential utility of triheptanoin treatment. Using fibroblasts derived from this patient, we generated induced pluripotent stem cells (hiPSCs) and differentiated them into hepatocytes (hiPSC-Heps). Characterization of patient-derived hiPSCs and hiPSC-Heps revealed significantly reduced MDH2 protein expression. Untargeted proteotyping of hiPSC-Heps revealed global dysregulation of mitochondrial proteins, including upregulation of TCA cycle and fatty acid oxidation enzymes. Metabolomic profiling confirmed TCA cycle and MAS dysregulation, and demonstrated normalization of malate, fumarate and aspartate following treatment with the triheptanoin components glycerol and heptanoate. Taken together, our results provide the first patient-derived hiPSC-Hep-based model of MDH2 deficiency, confirm altered TCA cycle function, and provide further evidence for the implementation of triheptanoin therapy for this ultra-rare disease.
This study reveals altered expression of mitochondrial pathways including the tricarboxylic acid cycle and changes in metabolite profiles in malate dehydrogenase 2 deficiency and provides the molecular basis for triheptanoin treatment in this ultra-rare disease.
线粒体苹果酸脱氢酶2(MDH2)通过直接参与三羧酸(TCA)循环和苹果酸-天冬氨酸穿梭(MAS)对细胞能量产生至关重要。遗传性MDH2缺乏症是一种由该基因双等位基因致病性变异引起的超罕见代谢疾病,导致早发性脑病、精神运动发育迟缓、肌张力减退和频繁癫痫发作。目前,这种毁灭性疾病尚无治愈方法。我们最近报告了一名患有MDH2缺乏症的三岁女孩在接受三庚酸甘油酯治疗后症状有所改善。在此,我们旨在更好地表征这种疾病,并增进我们对三庚酸甘油酯治疗潜在效用的理解。利用从该患者获得的成纤维细胞,我们生成了诱导多能干细胞(hiPSC)并将其分化为肝细胞(hiPSC-Heps)。对患者来源的hiPSC和hiPSC-Heps的表征显示MDH2蛋白表达显著降低。对hiPSC-Heps进行非靶向蛋白质组分析揭示了线粒体蛋白的整体失调,包括TCA循环和脂肪酸氧化酶的上调。代谢组学分析证实了TCA循环和MAS失调,并证明在使用三庚酸甘油酯成分甘油和庚酸治疗后苹果酸、富马酸和天冬氨酸恢复正常。综上所述,我们的结果提供了首个基于患者来源的hiPSC-Hep的MDH2缺乏症模型,证实了TCA循环功能改变,并为这种超罕见疾病实施三庚酸甘油酯治疗提供了进一步证据。
本研究揭示了包括三羧酸循环在内的线粒体途径表达改变以及苹果酸脱氢酶2缺乏症中代谢物谱的变化,并为这种超罕见疾病的三庚酸甘油酯治疗提供了分子基础。