Suppr超能文献

公众和患者对利用临床和行政健康数据来识别和联系未来有患病风险的人的看法——以慢性肾脏病为例。

Public and patient perspectives on the use of clinical and administrative health data to identify and contact people at risk of future illness-The case of chronic kidney disease.

机构信息

Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.

ICES, Toronto, Ontario, Canada.

出版信息

PLoS One. 2024 Mar 1;19(3):e0298382. doi: 10.1371/journal.pone.0298382. eCollection 2024.

Abstract

For decades, researchers have used linkable administrative health data for evaluating the health care system, subject to local privacy legislation. In Ontario, Canada, the relevant privacy legislation permits some organizations (prescribed entities) to conduct this kind of research but is silent on their ability to identify and contact individuals in those datasets. Following consultation with the Office of the Information and Privacy Commissioner of Ontario, we developed a pilot study to identify and contact by mail a sample of people at high risk for kidney failure within the next 2 years, based on laboratory and administrative data from provincial datasets held by ICES, to ensure they receive needed kidney care. Before proceeding, we conducted six focus groups to understand the acceptability to the public and people living with chronic kidney disease of direct mail outreach to people at high risk of developing kidney failure. While virtually all participants indicated they would likely participate in the study, most felt strongly that the message should come directly from their primary care provider or whoever ordered the laboratory tests, rather than from an unknown organization. If this is not possible, they felt the health care provider should be made aware of the concern related to their kidney health. Most agreed that, if health authorities could identify people at high risk of a treatable life-threatening illness if caught early enough, there is a social responsibility to notify people. While privacy laws allow for free flow of health information among health care providers who provide direct clinical care, the proposed case-finding and outreach falls outside that model. Enabling this kind of information flow will require greater clarity in existing laws or revisions to these laws. This also requires adequate notification and culture change for health care providers and the public around information uses and flows.

摘要

几十年来,研究人员一直利用可链接的行政健康数据来评估医疗保健系统,但须遵守当地的隐私立法。在加拿大安大略省,相关的隐私立法允许某些组织(指定实体)进行此类研究,但对其在这些数据集中识别和联系个人的能力保持沉默。在与安大略省信息和隐私专员办公室协商后,我们开展了一项试点研究,根据安大略省卫生信息研究所持有的省级数据集的实验室和行政数据,以邮件形式识别并联系未来 2 年内有发生肾衰竭高风险的人群样本,以确保他们获得所需的肾脏护理。在继续之前,我们进行了六次焦点小组讨论,以了解公众和慢性肾脏病患者对向有发生肾衰竭高风险的人群进行直接邮件外展的可接受程度。尽管几乎所有参与者都表示他们可能会参与这项研究,但大多数人强烈认为,该信息应该直接来自他们的初级保健提供者或下令进行实验室检测的人,而不是来自一个未知的组织。如果不可能,他们认为应让医疗保健提供者了解与他们肾脏健康相关的问题。大多数人都认为,如果卫生当局能够及早发现有生命危险的可治疗疾病的高危人群,那么有责任通知这些人。虽然隐私法允许直接提供临床护理的医疗保健提供者之间自由流动健康信息,但拟议的病例发现和外展工作不属于这种模式。要实现这种信息流,需要在现有法律中增加明确规定或对这些法律进行修订。这还需要对医疗保健提供者和公众进行充分的通知和文化变革,以了解信息的使用和流向。

相似文献

3
4
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Utilization of DXA Bone Mineral Densitometry in Ontario: An Evidence-Based Analysis.
Ont Health Technol Assess Ser. 2006;6(20):1-180. Epub 2006 Nov 1.
9
10

本文引用的文献

1
A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories.
Nat Med. 2023 May;29(5):1113-1122. doi: 10.1038/s41591-023-02332-5. Epub 2023 May 8.
2
'Imposter participants' in online qualitative research, a new and increasing threat to data integrity?
Health Expect. 2023 Jun;26(3):941-944. doi: 10.1111/hex.13724. Epub 2023 Feb 16.
4
Specialist respiratory outreach: a case-finding initiative for identifying undiagnosed COPD in primary care.
NPJ Prim Care Respir Med. 2021 Feb 11;31(1):7. doi: 10.1038/s41533-021-00219-x.
5
The impact of electronic medical record system implementation on HCV screening and continuum of care: a systematic review.
Ann Hepatol. 2021 Sep-Oct;24:100322. doi: 10.1016/j.aohep.2021.100322. Epub 2021 Feb 4.
6
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance.
NPJ Digit Med. 2020 Oct 26;3:139. doi: 10.1038/s41746-020-00346-8. eCollection 2020.
7
ICES: Data, Discovery, Better Health.
Int J Popul Data Sci. 2020 Mar 11;4(2):1135. doi: 10.23889/ijpds.v4i2.1135.
9
Timely Referral to Outpatient Nephrology Care Slows Progression and Reduces Treatment Costs of Chronic Kidney Diseases.
Kidney Int Rep. 2016 Oct 14;2(2):142-151. doi: 10.1016/j.ekir.2016.09.062. eCollection 2017 Mar.
10
Impact of provider-patient communication on cancer screening adherence: A systematic review.
Prev Med. 2016 Dec;93:96-105. doi: 10.1016/j.ypmed.2016.09.034. Epub 2016 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验