College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China.
J Colloid Interface Sci. 2024 Jun;663:554-565. doi: 10.1016/j.jcis.2024.02.185. Epub 2024 Feb 27.
Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (T). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the T have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the T, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the T. Furthermore, the properties of biodegradable hydrogel photonic crystals above the T were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.
通过纳米凝胶的溶胶-凝胶转变形成的热致物理水凝胶通常在相变温度 (T) 以上失去结构颜色。在此,合成并研究了经历溶胶-凝胶转变但仍在 T 以上保持结构颜色的温度/pH/氧化还原响应纳米凝胶。N-异丙基丙烯酰胺 (NIPAm) 与 N-叔丁基丙烯酰胺 (TBA) 和 N-丙烯酰基-L-苯丙氨酸 (Aphe) 共聚形成 N,N'-双(丙烯酰基)胱氨酸 (BISS) 交联的 P(NIPAm/TBA/Aphe) 纳米凝胶 (简称 PNTA-BISS)。具有广泛可生物降解交联剂 BISS 含量的 PNTA-BISS 纳米凝胶可在 T 以上实现可逆的溶胶-凝胶转变,令人惊讶的是,具有可比含量的可生物降解 N,N'-双(丙烯酰基)半胱氨酸 (BAC) 交联剂 (简称 PNTA-BAC) 的 PNTA 纳米凝胶没有形成溶胶-凝胶转变。尽管 BISS 和 BAC 具有相同的具有氧化还原性质的二硫键,但 BISS 与 BAC 不同,它是水溶性的,并且具有两个羧基。通过温度变化 NMR 深入探讨了 PNTA-BISS 纳米凝胶形成水凝胶光子晶体的凝胶机制。结果表明,引入具有空间位阻和羧基的 Aphe 极大地减缓了 PNTA-BISS 纳米凝胶的收缩。因此,PNTA-BISS 纳米凝胶可以在 T 以上形成溶胶-凝胶转变,并进一步形成水凝胶光子晶体的结构颜色,这归因于羧基的存在。此外,首次研究了 T 以上可生物降解水凝胶光子晶体的性能,这归因于强还原剂 1,4-二硫苏糖醇 (DTT) 的存在。当负载阿霉素 (DOX) 时,PNTA-BISS 在 DTT 的影响下表现出良好的降解性能。综上所述,PNTA-BISS 纳米凝胶除了具有原位凝胶化能力外,还具有可降解性,为其在药物输送、生物技术和相关领域的应用提供了一种新的纳米平台。