Suppr超能文献

由可生物降解纳米凝胶组装的水凝胶光子晶体的制备及性能。

Preparation and properties of hydrogel photonic crystals assembled by biodegradable nanogels.

机构信息

College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.

College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China.

出版信息

J Colloid Interface Sci. 2024 Jun;663:554-565. doi: 10.1016/j.jcis.2024.02.185. Epub 2024 Feb 27.

Abstract

Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (T). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the T have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the T, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the T. Furthermore, the properties of biodegradable hydrogel photonic crystals above the T were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.

摘要

通过纳米凝胶的溶胶-凝胶转变形成的热致物理水凝胶通常在相变温度 (T) 以上失去结构颜色。在此,合成并研究了经历溶胶-凝胶转变但仍在 T 以上保持结构颜色的温度/pH/氧化还原响应纳米凝胶。N-异丙基丙烯酰胺 (NIPAm) 与 N-叔丁基丙烯酰胺 (TBA) 和 N-丙烯酰基-L-苯丙氨酸 (Aphe) 共聚形成 N,N'-双(丙烯酰基)胱氨酸 (BISS) 交联的 P(NIPAm/TBA/Aphe) 纳米凝胶 (简称 PNTA-BISS)。具有广泛可生物降解交联剂 BISS 含量的 PNTA-BISS 纳米凝胶可在 T 以上实现可逆的溶胶-凝胶转变,令人惊讶的是,具有可比含量的可生物降解 N,N'-双(丙烯酰基)半胱氨酸 (BAC) 交联剂 (简称 PNTA-BAC) 的 PNTA 纳米凝胶没有形成溶胶-凝胶转变。尽管 BISS 和 BAC 具有相同的具有氧化还原性质的二硫键,但 BISS 与 BAC 不同,它是水溶性的,并且具有两个羧基。通过温度变化 NMR 深入探讨了 PNTA-BISS 纳米凝胶形成水凝胶光子晶体的凝胶机制。结果表明,引入具有空间位阻和羧基的 Aphe 极大地减缓了 PNTA-BISS 纳米凝胶的收缩。因此,PNTA-BISS 纳米凝胶可以在 T 以上形成溶胶-凝胶转变,并进一步形成水凝胶光子晶体的结构颜色,这归因于羧基的存在。此外,首次研究了 T 以上可生物降解水凝胶光子晶体的性能,这归因于强还原剂 1,4-二硫苏糖醇 (DTT) 的存在。当负载阿霉素 (DOX) 时,PNTA-BISS 在 DTT 的影响下表现出良好的降解性能。综上所述,PNTA-BISS 纳米凝胶除了具有原位凝胶化能力外,还具有可降解性,为其在药物输送、生物技术和相关领域的应用提供了一种新的纳米平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验