Suppr超能文献

解锁类人对话:使用会话代理实现个性化医疗干预的自动化技术范围综述。

Unlocking human-like conversations: Scoping review of automation techniques for personalized healthcare interventions using conversational agents.

机构信息

Value for Health CoLAB, Lisboa 1150-190, Portugal; UNIDEMI, Department of Mechanical and Industrial Engineering, Nova School of Science and Technology, Caparica 2829-516, Portugal.

Value for Health CoLAB, Lisboa 1150-190, Portugal; Comprehensive Health Research Center, Nova Medical School, Lisboa 1169-056, Portugal; Department of Physics, Nova School of Science and Technology, Caparica 2829-516, Portugal.

出版信息

Int J Med Inform. 2024 May;185:105385. doi: 10.1016/j.ijmedinf.2024.105385. Epub 2024 Feb 24.

Abstract

BACKGROUND

Conversational agents (CAs) offer a sustainable approach to deliver personalized interventions and improve health outcomes.

OBJECTIVES

To review how human-like communication and automation techniques of CAs in personalized healthcare interventions have been implemented. It is intended for designers and developers, computational scientists, behavior scientists, and biomedical engineers who aim at developing CAs for healthcare interventions.

METHODOLOGY

A scoping review was conducted in accordance with PRISMA Extension for Scoping Review. A search was performed in May 2023 in Web of Science, Pubmed, Scopus and IEEE databases. Search results were extracted, duplicates removed, and the remaining results were screened. Studies that contained personalized and automated CAs within the healthcare domain were included. Information regarding study characterization, and human-like communication and automation techniques was extracted from articles that met the eligibility criteria.

RESULTS

Twenty-three studies were selected. These articles described the development of CAs designed for patients to either self-manage their diseases (such as diabetes, mental health issues, cancer, asthma, COVID-19, and other chronic conditions) or to enhance healthy habits. The human-like communication characteristics studied encompassed aspects like system flexibility, personalization, and affective characteristics. Seven studies used rule-based models, eleven applied retrieval-based techniques for content delivery, five used AI models, and six integrated affective computing.

CONCLUSIONS

The increasing interest in employing CAs for personalized healthcare interventions is noteworthy. The adaptability of dialogue structures and personalization features is still limited. Unlocking human-like conversations may encompass the use of affective computing and generative AI to help improve user engagement. Future research should focus on the integration of holistic methods to describe the end-user, and the safe use of generative models.

摘要

背景

对话代理(CA)提供了一种可持续的方法来提供个性化干预措施并改善健康结果。

目的

回顾 CA 在个性化医疗干预中的类人沟通和自动化技术的实施情况。本综述面向旨在开发医疗保健干预用 CA 的设计师和开发人员、计算科学家、行为科学家和生物医学工程师。

方法

按照 PRISMA 扩展的范围综述进行了一项范围综述。于 2023 年 5 月在 Web of Science、PubMed、Scopus 和 IEEE 数据库中进行了检索。提取搜索结果,去除重复项,并对剩余结果进行筛选。包含医疗保健领域个性化和自动化 CA 的研究被纳入。从符合入选标准的文章中提取有关研究特征以及类人沟通和自动化技术的信息。

结果

选择了 23 项研究。这些文章描述了为患者设计的 CA 的开发,旨在帮助患者自我管理疾病(如糖尿病、心理健康问题、癌症、哮喘、COVID-19 和其他慢性疾病)或增强健康习惯。研究中涉及的类人沟通特征包括系统灵活性、个性化和情感特征。有 7 项研究使用了基于规则的模型,11 项研究应用了基于检索的技术来提供内容,5 项研究使用了人工智能模型,6 项研究集成了情感计算。

结论

人们越来越有兴趣将 CA 用于个性化医疗干预措施,这一点值得注意。对话结构和个性化功能的适应性仍然有限。实现类人对话可能需要使用情感计算和生成式 AI 来帮助提高用户参与度。未来的研究应侧重于整合整体方法来描述最终用户,并安全使用生成式模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验