Laboratory of Physical Chemistry, ETH Zurich, Switzerland.
Laboratory of Physical Chemistry, ETH Zurich, Switzerland; St. Jude Children's Research Hospital, 262 Danny Thomas Place, 38105 Memphis, Tennessee, USA. Electronic address: https://twitter.com/harijik.
Curr Opin Struct Biol. 2024 Jun;86:102792. doi: 10.1016/j.sbi.2024.102792. Epub 2024 Mar 1.
Allostery is a fundamental mechanism of cellular homeostasis by intra-protein communication between distinct functional sites. It is an internal process of proteins to steer interactions not only with each other but also with other biomolecules such as ligands, lipids, and nucleic acids. In addition, allosteric regulation is particularly important in enzymatic activities. A major challenge in structural and molecular biology today is unraveling allosteric sites in proteins, to elucidate the detailed mechanism of allostery and the development of allosteric drugs. Here we summarize the recently developed tools and approaches which enable the elucidation of regulatory hotspots and correlated motion in biomolecules, focusing primarily on solution-state nuclear magnetic resonance spectroscopy (NMR). These tools open an avenue towards a rational understanding of the mechanism of allostery and provide essential information for the design of allosteric drugs.
变构作用是通过不同功能位点之间的蛋白质内通讯来实现细胞内稳态的基本机制。它是蛋白质的一个内在过程,不仅可以控制彼此之间的相互作用,还可以控制与其他生物分子(如配体、脂质和核酸)的相互作用。此外,变构调节在酶活性中尤为重要。当今结构和分子生物学的主要挑战之一是揭示蛋白质中的变构位点,以阐明变构的详细机制和开发变构药物。在这里,我们总结了最近开发的工具和方法,这些工具和方法可以阐明生物分子中的调节热点和相关运动,主要集中在溶液状态下的核磁共振波谱(NMR)。这些工具为理解变构机制提供了一条合理的途径,并为变构药物的设计提供了必要的信息。