Suppr超能文献

工程化羧酸还原酶和非特异性过氧化物酶用于风味和香气生物合成。

Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis.

机构信息

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

出版信息

J Biotechnol. 2024 Apr 10;385:1-12. doi: 10.1016/j.jbiotec.2024.02.013. Epub 2024 Feb 28.

Abstract

Emerging consumer demand for safer, more sustainable flavors and fragrances has created new challenges for the industry. Enzymatic syntheses represent a promising green production route, but the broad application requires engineering advancements for expanded diversity, improved selectivity, and enhanced stability to be cost-competitive with current methods. This review discusses recent advances and future outlooks for enzyme engineering in this field. We focus on carboxylic acid reductases (CARs) and unspecific peroxygenases (UPOs) that enable selective productions of complex flavor and fragrance molecules. Both enzyme types consist of natural variants with attractive characteristics for biocatalytic applications. Applying protein engineering methods, including rational design and directed evolution in concert with computational modeling, present excellent examples for property improvements to unleash the full potential of enzymes in the biosynthesis of value-added chemicals.

摘要

新兴的消费者对更安全、更可持续的香精和香料的需求给行业带来了新的挑战。酶合成代表了一种有前途的绿色生产途径,但广泛应用需要工程学的进步,以扩大多样性、提高选择性和增强稳定性,从而在成本上具有竞争力,超越当前的方法。本文综述了该领域酶工程的最新进展和未来展望。我们专注于羧酸还原酶(CARs)和非特异性过氧化物酶(UPOs),它们能够选择性地生产复杂的香精和香料分子。这两种酶都由具有吸引力的生物催化应用特性的天然变体组成。应用蛋白质工程方法,包括理性设计和定向进化,以及计算建模,为提高性能提供了极好的例子,从而充分发挥酶在增值化学品生物合成中的潜力。

相似文献

1
Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis.
J Biotechnol. 2024 Apr 10;385:1-12. doi: 10.1016/j.jbiotec.2024.02.013. Epub 2024 Feb 28.
2
Carboxylic acid reductases (CARs): An industrial perspective.
J Biotechnol. 2019 Oct 10;304:78-88. doi: 10.1016/j.jbiotec.2019.08.010. Epub 2019 Aug 17.
3
Engineering unspecific peroxygenases by structure-guided in vivo recombination of homologous protein blocks.
Methods Enzymol. 2025;714:407-423. doi: 10.1016/bs.mie.2025.01.008. Epub 2025 Feb 6.
4
Two New Unspecific Peroxygenases from Heterologous Expression of Fungal Genes in Escherichia coli.
Appl Environ Microbiol. 2020 Mar 18;86(7). doi: 10.1128/AEM.02899-19.
5
Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases.
Curr Opin Struct Biol. 2022 Apr;73:102342. doi: 10.1016/j.sbi.2022.102342. Epub 2022 Feb 28.
6
New insights on unspecific peroxygenases: superfamily reclassification and evolution.
BMC Evol Biol. 2019 Mar 13;19(1):76. doi: 10.1186/s12862-019-1394-3.
7
The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution.
Methods Enzymol. 2023;693:73-109. doi: 10.1016/bs.mie.2023.09.006. Epub 2023 Oct 16.
8
Shuffling the Neutral Drift of Unspecific Peroxygenase in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.00808-18. Print 2018 Aug 1.
9
Selective Oxygenation of Ionones and Damascones by Fungal Peroxygenases.
J Agric Food Chem. 2020 May 13;68(19):5375-5383. doi: 10.1021/acs.jafc.0c01019. Epub 2020 Apr 29.
10
Functional Expression of Two Unusual Acidic Peroxygenases from in Yeasts by Adopting Evolved Secretion Mutations.
Appl Environ Microbiol. 2021 Sep 10;87(19):e0087821. doi: 10.1128/AEM.00878-21.

本文引用的文献

1
Cell-free reduction of carboxylic acids with secreted carboxylic acid reductase.
J Biotechnol. 2024 Feb 20;382:44-50. doi: 10.1016/j.jbiotec.2024.01.008. Epub 2024 Jan 22.
2
The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution.
Methods Enzymol. 2023;693:73-109. doi: 10.1016/bs.mie.2023.09.006. Epub 2023 Oct 16.
3
Enantioselective High-Throughput Assay Showcased for the Identification of (R)- as well as (S)-Selective Unspecific Peroxygenases for C-H Oxidation.
Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202312721. doi: 10.1002/anie.202312721. Epub 2023 Oct 11.
4
The Scent of Change: Sustainable Fragrances Through Industrial Biotechnology.
Chembiochem. 2023 Oct 4;24(19):e202300309. doi: 10.1002/cbic.202300309. Epub 2023 Sep 5.
5
Light-Controlled Biocatalysis by Unspecific Peroxygenases with Genetically Encoded Photosensitizers.
Angew Chem Int Ed Engl. 2023 Oct 9;62(41):e202307897. doi: 10.1002/anie.202307897. Epub 2023 Sep 4.
6
Lactones from Unspecific Peroxygenase-Catalyzed In-Chain Hydroxylation of Saturated Fatty Acids.
Org Lett. 2023 Jul 14;25(27):4990-4995. doi: 10.1021/acs.orglett.3c01601. Epub 2023 Jun 30.
7
Structure of the Reductase Domain of a Fungal Carboxylic Acid Reductase and Its Substrate Scope in Thioester and Aldehyde Reduction.
ACS Catal. 2022 Dec 6;12(24):15668-15674. doi: 10.1021/acscatal.2c04426. eCollection 2022 Dec 16.
8
Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology.
Int J Biol Macromol. 2023 Jun 15;240:124526. doi: 10.1016/j.ijbiomac.2023.124526. Epub 2023 Apr 19.
9
Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances.
Biotechnol Adv. 2023 Jul-Aug;65:108151. doi: 10.1016/j.biotechadv.2023.108151. Epub 2023 Apr 8.
10
Repertoire of Computationally Designed Peroxygenases for Enantiodivergent C-H Oxyfunctionalization Reactions.
J Am Chem Soc. 2023 Feb 15;145(6):3443-3453. doi: 10.1021/jacs.2c11118. Epub 2023 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验