Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
Acta Biomater. 2024 Apr 1;178:221-232. doi: 10.1016/j.actbio.2024.02.035. Epub 2024 Feb 29.
The SLC20A2 transporter supplies phosphate ions (P) for diverse biological functions in vertebrates, yet has not been studied in crustaceans. Unlike vertebrates, whose skeletons are mineralized mainly by calcium phosphate, only minute amounts of P are found in the CaCO-mineralized exoskeletons of invertebrates. In this study, a crustacean SLC20A2 transporter was discovered and P transport to exoskeletal elements was studied with respect to the role of P in invertebrate exoskeleton biomineralization, revealing an evolutionarily conserved mechanism for P transport in both vertebrates and invertebrates. Freshwater crayfish, including the study animal Cherax quadricarinatus, require repeated molt cycles for their growth. During the molt cycle, crayfish form transient exoskeletal mineral storage organs named gastroliths, which mostly contain amorphous calcium carbonate (ACC), an unstable polymorph long-thought to be stabilized by P. RNA interference experiments via CqSLC20A2 dsRNA injections reduced P content in C. quadricarinatus gastroliths, resulting in increased calcium carbonate (CaCO) crystallinity and grain size. The discovery of a SLC20A2 transporter in crustaceans and the demonstration that knocking down its mRNA reduced P content in exoskeletal elements offers the first direct proof of a long-hypothesized mechanism by which P affects CaCO biomineralization in the crustacean exoskeleton. This research thus demonstrated the distinct role of P as an amorphous mineral polymorph stabilizer in vivo, suggesting further avenues for amorphous biomaterial studies. STATEMENT OF SIGNIFICANCE: • Crustaceans exoskeletons are hardened mainly by CaCO, with P in minute amounts • P was hypothesized to stabilize exoskeletal amorphous mineral forms in vivo • For the first time, transport protein for P was discovered in crayfish • Transport knock-down resulted in exoskeletal CaCO3 crystallization and reduced P.
SLC20A2 转运蛋白为脊椎动物的多种生物功能提供磷酸盐离子 (P),但尚未在甲壳动物中进行研究。与主要通过磷酸钙矿化骨骼的脊椎动物不同,只有微量的 P 存在于无脊椎动物的 CaCO3 矿化外骨骼中。在这项研究中,发现了一种甲壳动物 SLC20A2 转运蛋白,并研究了 P 向外骨骼元素的运输,以了解 P 在无脊椎动物外骨骼生物矿化中的作用,揭示了 P 在脊椎动物和无脊椎动物中运输的进化保守机制。淡水小龙虾,包括研究动物拟穴青蟹,需要反复蜕皮周期才能生长。在蜕皮周期中,小龙虾会形成短暂的外骨骼矿化储存器官,称为胃石,主要包含无定形碳酸钙 (ACC),一种长期以来被认为是由 P 稳定的不稳定多晶型物。通过 CqSLC20A2 dsRNA 注射进行的 RNA 干扰实验降低了 C. quadricarinatus 胃石中的 P 含量,导致碳酸钙 (CaCO) 结晶度和晶粒尺寸增加。甲壳动物 SLC20A2 转运蛋白的发现以及敲低其 mRNA 降低外骨骼元素中 P 含量的实验结果,首次直接证明了长期以来假设的 P 影响甲壳动物外骨骼 CaCO 生物矿化的机制。这项研究因此证明了 P 作为体内无定形矿物多晶型稳定剂的独特作用,为无定形生物材料研究提供了进一步的途径。
• 甲壳动物的外骨骼主要由 CaCO3 硬化,P 的含量很少
• P 被假设为体内稳定外骨骼无定形矿物形态
• 首次在小龙虾中发现 P 转运蛋白
• 转运蛋白敲低导致外骨骼 CaCO3 结晶和 P 减少。