Evidera, London, England, UK.
University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Value Health. 2024 Jun;27(6):737-745. doi: 10.1016/j.jval.2024.02.009. Epub 2024 Feb 28.
Multiple methods are available for collecting health preference information. However, information on the design and analysis of novel methods is limited. This article aims to provide the first introduction into the design and analysis of multidimensional thresholding (MDT).
We introduce MDT as a 2-step approach: First, participants rank the largest possible improvements in all considered attributes by their importance. Second, participants complete a series of systematically combined trade-off questions. Hit-and-Run sampling is used for obtaining preference weights. We also use a computational experiment to compare different MDT designs.
The outlined MDT can generate preference information suitable for specifying a multiattribute utility function at the individual level. The computational experiment demonstrates the method's ability to recover preference weights at a high level of precision. While all designs in the computation experiment perform comparably well on average, the design outlined in the paper stands out with a high level of precision even if differences in relative attribute importance are large.
MDT is suitable for preference elicitation, in particular if sample sizes are small. Future research should help improve the methods (e.g., remove the need for an initial ranking) to increase the potential reach of MDT.
有多种方法可用于收集健康偏好信息。然而,关于新型方法的设计和分析的信息有限。本文旨在首次介绍多维阈值法(MDT)的设计和分析。
我们将 MDT 介绍为两步法:首先,参与者根据重要性对所有考虑到的属性进行尽可能大的改进排名。其次,参与者完成一系列系统组合的权衡问题。采用随机游走抽样获取偏好权重。我们还使用计算实验比较了不同的 MDT 设计。
所概述的 MDT 可以生成适合在个体水平上指定多属性效用函数的偏好信息。计算实验表明该方法具有以高精度恢复偏好权重的能力。虽然计算实验中的所有设计平均性能相当,但本文中概述的设计即使在相对属性重要性差异较大的情况下,也具有高精度的优势。
MDT 适合偏好 elicitation,特别是在样本量较小时。未来的研究应有助于改进这些方法(例如,无需初始排名),以增加 MDT 的潜在应用范围。