Sleiman Noura, Pflieger Rachel, Hallez Loïc, Nikitenko Sergey I, Hihn Jean-Yves
Université de Franche-Comté, CNRS, Institut UTINAM UMR 6213, F-25000 Besançon, France; ICSM UMR 5257 - CEA, Univ Montpellier, CNRS, ENSCM, Bagnols-sur-Cèze, France; IRT M2P, Metz, France.
ICSM UMR 5257 - CEA, Univ Montpellier, CNRS, ENSCM, Bagnols-sur-Cèze, France.
Ultrason Sonochem. 2024 Mar;104:106836. doi: 10.1016/j.ultsonch.2024.106836. Epub 2024 Feb 28.
The dissolution of metals, influenced by mechanical and chemical factors, plays a crucial role in various applications. Ultrasonic irradiation has been explored for its ability to enhance dissolution rates and modify surface characteristics. In this study, we investigate the dissolution of magnesium (Mg) and magnesium alloys under high-intensity focused ultrasound (HIFU) conditions with frequency sweeping (wobbling). Our findings reveal distinct effects of cavitation and acoustic streaming on the dissolution process. For pure magnesium, ultrasonic treatment significantly increases dissolution rates compared to silent conditions. Negative frequency sweeps result in the highest dissolution rates, linked to increased cavitation activity, while positive sweeps reduce dissolution rates but maintain acoustic streaming effects. The removal of surface oxides is accelerated in all sonication conditions. Macro- and micro-roughness patterns on the surface correspond to the wobbling frequency range, with wavelengths matching the average ultrasonic frequency. However, dissolution is not uniform across the sample, and preferential attack occurs at the focal point during negative frequency sweeps. In contrast, magnesium alloys exhibit lower dissolution rates than pure Mg. The alloy's mechanical properties make it less susceptible to cavitation erosion but more sensitive to acoustic streaming-induced dissolution. Grain boundaries are preferentially attacked, revealing differences between ductile pure Mg and the harder, more cavitation-resistant, alloy. This study highlights the complex interplay between cavitation and acoustic streaming in the dissolution of magnesium and its alloys under HIFU conditions, shedding light on the limits and potential applications of this technique, particularly in microstructure analysis.
金属的溶解受机械和化学因素影响,在各种应用中起着关键作用。超声辐照因其能够提高溶解速率和改变表面特性而受到研究。在本研究中,我们研究了在高强度聚焦超声(HIFU)条件下,通过频率扫描(摆动)对镁(Mg)及镁合金的溶解情况。我们的研究结果揭示了空化和声流对溶解过程的不同影响。对于纯镁,与无声条件相比,超声处理显著提高了溶解速率。负向频率扫描导致最高的溶解速率,这与空化活动增加有关,而正向扫描降低了溶解速率,但保持了声流效应。在所有超声处理条件下,表面氧化物的去除都加快了。表面的宏观和微观粗糙度模式与摆动频率范围相对应,波长与平均超声频率匹配。然而,样品上的溶解并不均匀,在负向频率扫描期间,焦点处会出现优先腐蚀。相比之下,镁合金的溶解速率低于纯镁。合金的机械性能使其不易受到空化侵蚀,但对声流诱导的溶解更敏感。晶界受到优先侵蚀,这揭示了韧性纯镁与更硬、更抗空化的合金之间的差异。本研究突出了在HIFU条件下,镁及其合金溶解过程中空化和声流之间的复杂相互作用,阐明了该技术的局限性和潜在应用,特别是在微观结构分析方面。