Wang Pengcheng, Tan Chunjie, Ji Xiang, Bai Jingfeng, Yu Alfred C H, Qin Peng
School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
Ultrason Sonochem. 2024 Mar;104:106830. doi: 10.1016/j.ultsonch.2024.106830. Epub 2024 Feb 23.
The use of the subharmonic signal from microbubbles exposed to ultrasound is a promising safe and cost-effective approach for the non-invasive measurement of blood pressure. Achieving a high sensitivity of the subharmonic amplitude to the ambient overpressure is crucial for clinical applications. However, currently used microbubbles have a wide size distribution and diverse shell properties. This causes uncertainty in the response of the subharmonic amplitude to changes in ambient pressure, which limits the sensitivity. The aim of this study was to use monodisperse microbubbles to improve the sensitivity of subharmonic-based pressure measurements. With the same shell materials and gas core, we used a flow-focusing microfluidic chip and a mechanical agitation method to fabricate monodisperse (∼2.45-µm mean radius and 4.7 % polydisperse index) and polydisperse microbubbles (∼1.51-µm mean radius and 48.4 % polydisperse index), respectively. We varied the ultrasound parameters (i.e., the frequency, peak negative pressure (PNP) and pulse length), and found that there was an optimal excitation frequency (2.8 MHz) for achieving maximal subharmonic emission for monodisperse microbubbles, but not for polydisperse microbubbles. Three distinct regimes (occurrence, growth, and saturation) were identified in the response of the subharmonic amplitude to increasing PNP for both monodisperse and polydisperse microbubbles. For the polydisperse microbubbles, the subharmonic amplitude decreased either monotonically or non-monotonically with ambient overpressure, depending on the PNP. By contrast, for the monodisperse microbubbles, there was only a monotonic decrease at all PNPs. The maximum sensitivity (1.18 dB/kPa, R = 0.97) of the subharmonic amplitude to ambient overpressure for the monodisperse microbubbles was ∼6.5 times higher than that for the polydisperse microbubbles (0.18 dB/kPa, R = 0.88). These results show that monodisperse microbubbles can achieve a more consistent response of the subharmonic signal to changes in ambient overpressure and greatly improve the measurement sensitivity.
利用暴露于超声下的微泡产生的次谐波信号,是一种用于无创血压测量的、有前景的安全且经济高效的方法。实现次谐波幅度对环境超压的高灵敏度,对于临床应用至关重要。然而,目前使用的微泡具有宽尺寸分布和多样的壳特性。这导致次谐波幅度对环境压力变化的响应存在不确定性,从而限制了灵敏度。本研究的目的是使用单分散微泡来提高基于次谐波的压力测量的灵敏度。在壳材料和气核相同的情况下,我们分别使用流动聚焦微流控芯片和机械搅拌方法来制备单分散(平均半径约为2.45 µm,多分散指数为4.7%)和多分散微泡(平均半径约为1.51 µm,多分散指数为48.4%)。我们改变了超声参数(即频率、负峰值压力(PNP)和脉冲长度),发现对于单分散微泡,存在一个最佳激发频率(2.8 MHz)以实现最大次谐波发射,而对于多分散微泡则不然。在单分散和多分散微泡的次谐波幅度对不断增加的PNP的响应中,都识别出了三个不同的阶段(出现、增长和饱和)。对于多分散微泡,次谐波幅度随环境超压单调或非单调下降,这取决于PNP。相比之下,对于单分散微泡,在所有PNP下都只有单调下降。单分散微泡的次谐波幅度对环境超压的最大灵敏度(1.18 dB/kPa,R = 0.97)比多分散微泡(0.18 dB/kPa,R = 0.88)高约6.5倍。这些结果表明,单分散微泡可以实现次谐波信号对环境超压变化更一致的响应,并大大提高测量灵敏度。