Suppr超能文献

使用相场损伤模型对板层骨横向断裂行为的细观力学建模:非胶原蛋白和矿化胶原纤维的作用。

Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.

机构信息

Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.

Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.

出版信息

J Mech Behav Biomed Mater. 2024 May;153:106472. doi: 10.1016/j.jmbbm.2024.106472. Epub 2024 Feb 24.

Abstract

At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (Vf=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs ( [Formula: see text] ) to the interphase between individual minerals ( [Formula: see text] ): (i) When [Formula: see text] , MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.

摘要

在组织尺度及以上,已经存在着良好确立的结构-性能关系,通过幂律关系等,可以很好地近似骨的生物力学性能,例如,组织矿物质密度与弹性性质的关系。然而,在组织水平以下,各个成分的单独作用变得突出,这些简单的关系往往会失效,需要更详细的理论和计算模型来描述力学响应。在这项研究中,开发了一个二维的层状骨基于微力学损伤的代表性体积元(RVE),其中包括一个新颖的相场损伤模型的实现,用于描述非胶原蛋白在矿物质-矿物质和矿物质-纤维界面区域的行为。研究发现,虽然组织的刚度由细胞外矿物质和矿化胶原纤维的相对比例决定,但组织在横向方向的强度和韧性依赖于矿物质-矿物质和矿物质-纤维界面的相互作用,这突出了非胶原蛋白在确定该尺度下基于断裂的过程中的重要性。虽然断裂往往发生在细胞外矿物质基质中富含矿物质的区域,但研究发现,在低密度下矿化胶原纤维的存在并没有对横向加载下的裂纹扩展行为产生实质性的贡献。然而,在生理体积分数(Vf=50%)下,根据 MCF 周围相间( [Formula: see text] )与单个矿物质之间相间( [Formula: see text] )的相对强度值( [Formula: see text] ),可能会出现不同的情况:(i)当 [Formula: see text] 时,MCFs 似乎有助于裂纹扩展,MCFs-矿物质脱粘是主要的失效模式;(ii)一旦 γ>1,MCFs 会阻碍微裂纹,从而抑制裂纹扩展,可以将其视为一种能量耗散机制。一旦裂纹被 MCFs 或严重偏转阻止,组织的有效断裂性能也会突然增加断裂功密度(J 积分)。总的来说,模型的预测行为与通过实验和计算方法报告的行为非常吻合,这突出了它在进一步理解与疾病和衰老导致的结构和组成变化相关的骨超微结构改变的力学响应方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验