Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India.
Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India.
Environ Geochem Health. 2024 Mar 4;46(3):102. doi: 10.1007/s10653-024-01903-w.
Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as K and V on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and HO were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.
爆炸物对水生生物群具有危害性和毒性,会扰乱它们的内分泌系统。此外,它们对人类和动物具有致癌、致畸和致突变作用。因此,本研究旨在通过草生链霉菌(Streptomyces coelicolor)中的湿地过氧化物酶对爆炸物 2,4,6-三硝基苯酚(TNP)进行生物转化。观察到总过氧化物酶产量为 20779mg/L,纯化倍数为 51.6 倍。通过计算机分子对接和体外评估,评估了过氧化物酶和 TNP 复合物的结合能和相互作用的结合位点残基。TNP 需要最小的结合能-6.91kJ/mol,并在过氧化物酶的纯形式下受到生物降解(89.73%),MASCOT 蛋白质分析的分子量为 45kDa,相似度评分为 34。此外,过氧化物酶活性通过 Zymogram 分析得到证实。过氧化物酶的特性表明,最佳 pH 和温度值分别为 6 和 40°C,相应的稳定性范围为 3.5 至 7。有趣的是,动力学参数如 K 和 V 在 2,2'-偶氮-双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)和 HO 上分别为 19.27μm 和 0.41μm/min;21.4μm 和 0.1μm/min。在各种底物、化学品和微量元素中,ABTS(40mM)、柠檬酸(5mM)和 Fe(5mM)表现出过氧化物酶的最高活性。计算对接和体外结果是一致的,UV-Vis 光谱、HPLC、FTIR 和 GC-MS 表明 TNP 存在简单的代谢物,如硝基苯酚和苯醌,展示了草生链霉菌过氧化物酶对 TNP 进行生物转化的功效。因此,本研究为爆炸物弹药的生物处理提供了一个有前途的渠道,为建立可持续的绿色地球做出了贡献。