Suppr超能文献

癌症 DNA 甲基化分析的进展:使用非负矩阵分解和基于知识的约束来提高生物学可解释性。

Advances in cancer DNA methylation analysis with methPLIER: use of non-negative matrix factorization and knowledge-based constraints to enhance biological interpretability.

机构信息

Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.

出版信息

Exp Mol Med. 2024 Mar;56(3):646-655. doi: 10.1038/s12276-024-01173-7. Epub 2024 Mar 4.

Abstract

DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing. Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation data analysis and enhance DNA methylation data resources.

摘要

DNA 甲基化是一种表观遗传修饰,在个体发生和细胞分化过程中会发生动态变化。DNA 甲基化模式调节基因表达,已被广泛研究。虽然已经开发出用于 DNA 甲基化分析的工具,但大多数工具都集中在数据集内的组间比较分析上;因此,很难进行跨数据集的研究,如罕见病研究或跨机构研究。本研究描述了一种新的 DNA 甲基化分析方法,即 methPLIER,它能够进行跨数据集的比较分析。methPLIER 将通路水平信息提取器(PLIER)与知识矩阵正则化和迁移学习相结合,PLIER 是一种非负矩阵分解(NMF)方法。methPLIER 可以基于通过大规模数据矩阵分解获得的潜在特征矩阵以及通过要分析的数据的矩阵分解获得的因子加载矩阵,对样本和跨数据集进行比较分析。我们使用 methPLIER 分析了一个肺癌数据集,并证实数据分解反映了无复发生存的样本特征。此外,methPLIER 可以分析通过不同预处理方法获得的数据,从而减少由于预处理而导致的数据集之间的分布偏差。此外,methPLIER 可用于不同平台获得的甲基化数据的比较分析,从而减少由于平台差异导致的数据分布偏差。methPLIER 有望促进横断面 DNA 甲基化数据分析并增强 DNA 甲基化数据资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e2/10985003/e705db28fb26/12276_2024_1173_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验