Sun Zhuangzhi, Lin Jiawei, Lu Suwei, Li Yuhang, Qi Tingting, Peng Xiaobo, Liang Shijing, Jiang Lilong
National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China.
Langmuir. 2024 Mar 12;40(10):5469-5478. doi: 10.1021/acs.langmuir.3c04025. Epub 2024 Mar 4.
The electrochemical nitrogen reduction reaction (eNRR) has emerged as a promising strategy for green ammonia synthesis. However, it suffers unsatisfactory reaction performance owing to the low aqueous solubility of N in aqueous solution, the high dissociation energy of N≡N, and the unavoidable competing hydrogen evolution reaction (HER). Herein, a MIL-53(Fe)@TiO catalyst is designed and synthesized for highly efficient eNRR. Relative to simple MIL-53(Fe), MIL-53(Fe)@TiO achieves a 2-fold enhancement in the Faradaic efficiency (FE) with an improved ammonia yield rate by 76.5% at -0.1 V versus reversible hydrogen electrode (RHE). After four cycles of electrocatalysis, MIL-53(Fe)@TiO can maintain a good catalytic activity, while MIL-53(Fe) exhibits a significant decrease in the NH yield rate and FE by 79.8 and 82.3%, respectively. Benefiting from the synergetic effect between TiO and MIL-53(Fe) in the composites, Fe ions can be greatly stabilized in MIL-53(Fe) during the eNRR process, which greatly hinders the catalyst deactivation caused by the electrochemical reduction of Fe ions. Further, the charge transfer ability in the interface of composites can be improved, and thus, the eNRR activity is significantly boosted. These findings provide a promising insight into the preparation of efficient composite electrocatalysts.
电化学氮还原反应(eNRR)已成为一种有前景的绿色合成氨策略。然而,由于氮气在水溶液中的低溶解度、N≡N的高解离能以及不可避免的析氢反应(HER)竞争,其反应性能并不理想。在此,设计并合成了一种用于高效eNRR的MIL-53(Fe)@TiO催化剂。相对于单纯的MIL-53(Fe),MIL-53(Fe)@TiO在相对于可逆氢电极(RHE)为-0.1 V时,法拉第效率(FE)提高了2倍,氨产率提高了76.5%。经过四个循环的电催化后,MIL-53(Fe)@TiO仍能保持良好的催化活性,而MIL-53(Fe)的氨产率和FE分别显著下降了79.8%和82.3%。得益于复合材料中TiO和MIL-53(Fe)之间的协同效应,在eNRR过程中,铁离子能在MIL-53(Fe)中得到极大稳定,这极大地阻碍了由铁离子电化学还原引起的催化剂失活。此外,复合材料界面的电荷转移能力得以提高,从而显著提升了eNRR活性。这些发现为高效复合电催化剂的制备提供了有前景的见解。