Suppr超能文献

神经外科文献分类——三种自动化方法的评估及文献的时间趋势分析

Neurosurgical literature classification - Evaluation of three automated methods and time trend analysis of the literature.

作者信息

Eftekhar Shayan, Eftekhar Behzad

机构信息

The University of Queensland, Brisbane, Australia.

Department of Neurosurgery, Nepean Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

出版信息

Heliyon. 2024 Feb 21;10(5):e26831. doi: 10.1016/j.heliyon.2024.e26831. eCollection 2024 Mar 15.

Abstract

BACKGROUND

Automated supervised text classification methods require preclassified training data. Their application in scenarios that a large amount of preclassified data is not accessible is challenging. Neurosurgical literature classification into subspecialties is an example of this situation. We have introduced an automated similarity-based text classification method, evaluated it along with two other automated methods and applied the introduced method in neurosurgical literature classification.

METHODS

Performance of an introduced similarity-based text classification method along with two other automated methods (Lbl2Vec and keyword counting-based methods) was compared with performance of two senior neurosurgery registrars in classification of neurosurgical literature to 5 subspecialties. The Kappa-statistic measure of interrater agreement, overall marginal homogeneity using the Stuart-Maxwell test, marginal homogeneity relative to individual categories using McNemar tests and the sensitivity and specificity of each of the three methods were calculated.The introduced method was used to classify 211617 neurosurgical publications indexed in Pubmed to different subspecialties based on keywords extracted from subspecialty sections of a neurosurgery textbook.

RESULTS

The introduced similarity-based method showed the highest agreement with the registrars (raw agreement and Kappa value) followed by the Lbl2Vec and the counting-based method. Classifications of the English neurosurgical publications indexed in Pubmed into categories of Oncology, Vascular, Spine and functional using the introduced similarity-based method were more reliable (closer to the registrars' classifications) than Cranial trauma. The classifications and future forecast showed highest publications in Oncology, followed by Cranial trauma, Vascular, spine and functional neurosurgery.

CONCLUSION

The classification of the English neurosurgical publications indexed in Pubmed to different subspecialties, using the introduced method, shows that Oncology and tumour has been the main battleground for the neurosurgeons over years and probably in the near future. The performance of the introduced classification method in comparison with the human performance shows its potential application in the situations that enough preclassified data are not accessible for automated text classification.

摘要

背景

自动化监督文本分类方法需要预先分类的训练数据。在无法获取大量预先分类数据的场景中应用这些方法具有挑战性。神经外科文献按亚专业分类就是这种情况的一个例子。我们引入了一种基于相似度的自动化文本分类方法,将其与其他两种自动化方法一起进行评估,并将引入的方法应用于神经外科文献分类。

方法

将引入的基于相似度的文本分类方法与其他两种自动化方法(Lbl2Vec和基于关键词计数的方法)的性能与两名资深神经外科住院医师将神经外科文献分类为5个亚专业的性能进行比较。计算了评分者间一致性的Kappa统计量、使用Stuart-Maxwell检验的总体边际同质性、使用McNemar检验相对于各个类别的边际同质性以及三种方法各自的敏感性和特异性。基于从神经外科学教科书亚专业章节中提取的关键词,使用引入的方法将211617篇在Pubmed上索引的神经外科出版物分类到不同的亚专业。

结果

引入的基于相似度的方法与住院医师的一致性最高(原始一致性和Kappa值),其次是Lbl2Vec和基于计数的方法。使用引入的基于相似度的方法将Pubmed上索引的英文神经外科出版物分类为肿瘤学、血管、脊柱和功能性类别比颅脑创伤更可靠(更接近住院医师的分类)。分类和未来预测显示肿瘤学领域的出版物最多,其次是颅脑创伤、血管、脊柱和功能性神经外科。

结论

使用引入的方法将Pubmed上索引的英文神经外科出版物分类到不同的亚专业表明,多年来肿瘤学和肿瘤一直是神经外科医生的主要战场,并且可能在不久的将来也是如此。与人工性能相比,引入的分类方法的性能表明其在无法获取足够预先分类数据进行自动化文本分类的情况下的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4719/10906433/88f7b21af019/gr1.jpg

相似文献

1
Neurosurgical literature classification - Evaluation of three automated methods and time trend analysis of the literature.
Heliyon. 2024 Feb 21;10(5):e26831. doi: 10.1016/j.heliyon.2024.e26831. eCollection 2024 Mar 15.
4
Defining a new neurosurgical complication classification: lessons learned from a monthly Morbidity and Mortality conference.
J Neurosurg. 2019 Jan 18;132(1):272-276. doi: 10.3171/2018.9.JNS181004. Print 2020 Jan 1.
5
African Contribution to the World Neurosurgical Literature During the Past Two Decades (1999-2018) Using PubMed Database.
World Neurosurg. 2019 Jun;126:314-321. doi: 10.1016/j.wneu.2019.03.095. Epub 2019 Mar 19.
6
Part I: The application of the h-index to groups of individuals and departments in academic neurosurgery.
World Neurosurg. 2013 Dec;80(6):759-765.e3. doi: 10.1016/j.wneu.2013.07.010. Epub 2013 Jul 18.
8
Bibliometric Evaluation of U.S. Neurosurgery Subspecialties and Academic Rank Using RCR Index.
World Neurosurg. 2022 Feb;158:e138-e147. doi: 10.1016/j.wneu.2021.10.148. Epub 2021 Oct 26.
9
Neurosurgical skills analysis by machine learning models: systematic review.
Neurosurg Rev. 2023 May 16;46(1):121. doi: 10.1007/s10143-023-02028-x.
10
Bradford's law: identification of the core journals for neurosurgery and its subspecialties.
J Neurosurg. 2016 Feb;124(2):569-79. doi: 10.3171/2015.3.JNS15149. Epub 2015 Sep 4.

本文引用的文献

2
Evaluating human versus machine learning performance in classifying research abstracts.
Scientometrics. 2020;125(2):1197-1212. doi: 10.1007/s11192-020-03614-2. Epub 2020 Jul 18.
3
An analysis of surgical literature trends over four decades.
Am J Surg. 2021 Jan;221(1):53-54. doi: 10.1016/j.amjsurg.2020.07.011. Epub 2020 Jul 16.
4
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
5
Characteristics and trends of research on positron emission tomography: a bibliometric analysis, 2002-2012.
Ann Nucl Med. 2014 Jun;28(5):455-62. doi: 10.1007/s12149-014-0836-7. Epub 2014 Mar 12.
6
Interrater reliability: the kappa statistic.
Biochem Med (Zagreb). 2012;22(3):276-82.
7
Neurosurgical research in Pakistan: trends of publication and quality of evidence.
Clin Neurol Neurosurg. 2011 Feb;113(2):107-10. doi: 10.1016/j.clineuro.2010.09.013. Epub 2010 Oct 16.
8
A test for symmetry in contingency tables.
J Am Stat Assoc. 1948 Dec;43(244):572-4. doi: 10.1080/01621459.1948.10483284.
9
Comparing the classification of subjects by two independent judges.
Br J Psychiatry. 1970 Jun;116(535):651-5. doi: 10.1192/bjp.116.535.651.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验