Suppr超能文献

基于多尺度 smeared 概念(Kojic 传输模型)对生物系统中物理场进行有限元建模的一般性研究 。

On the generality of the finite element modeling physical fields in biological systems by the multiscale smeared concept (Kojic transport model).

作者信息

Kojic Milos, Milosevic Miljan, Simic Vladimir, Milicevic Bogdan, Terracciano Rossana, Filgueira Carly S

机构信息

Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA.

Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia.

出版信息

Heliyon. 2024 Feb 23;10(5):e26354. doi: 10.1016/j.heliyon.2024.e26354. eCollection 2024 Mar 15.

Abstract

The biomechanical and biochemical processes in the biological systems of living organisms are extremely complex. Advances in understanding these processes are mainly achieved by laboratory and clinical investigations, but in recent decades they are supported by computational modeling. Besides enormous efforts and achievements in this modeling, there still is a need for new methods that can be used in everyday research and medical practice. In this report, we give a view of the generality of the finite element methodology introduced by the first author and supported by his collaborators. It is based on the multiscale smeared physical fields, termed as Kojic Transport Model (KTM), published in several journal papers and summarized in a recent book (Kojic et al., 2022) [1]. We review relevant literature to demonstrate the distinctions and advantages of our methodology and indicate possible further applications. We refer to our published results by a selection of a few examples which include modeling of partitioning, blood flow, molecular transport within the pancreas, multiscale-multiphysics model of coupling electrical field and ion concentration, and a model of convective-diffusive transport within the lung parenchyma. Two new examples include a model of convective-diffusive transport within a growing tumor, and drug release from nanofibers with fiber degradation.

摘要

生物体生物系统中的生物力学和生物化学过程极其复杂。对这些过程的理解进展主要通过实验室和临床研究取得,但近几十年来,它们得到了计算建模的支持。尽管在这种建模方面付出了巨大努力并取得了诸多成果,但仍需要可用于日常研究和医学实践的新方法。在本报告中,我们阐述了第一作者及其合作者提出的有限元方法的通用性。它基于多尺度涂抹物理场,称为科吉传输模型(KTM),已发表在多篇期刊论文中,并在最近一本书中进行了总结(科吉等人,2022年)[1]。我们回顾相关文献以展示我们方法的区别和优势,并指出可能的进一步应用。我们通过几个例子来引用我们已发表的结果,这些例子包括胰腺内分配、血流、分子运输的建模,电场与离子浓度耦合的多尺度多物理模型,以及肺实质内对流扩散运输模型。两个新例子包括生长肿瘤内对流扩散运输模型和具有纤维降解的纳米纤维药物释放模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed6/10907537/37071c80051d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验