Suppr超能文献

质量释放曲线作为生物组织内扩散传输建模的本构曲线。

Mass release curves as the constitutive curves for modeling diffusive transport within biological tissue.

机构信息

Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030, United States; Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.

Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia.

出版信息

Comput Biol Med. 2018 Jan 1;92:156-167. doi: 10.1016/j.compbiomed.2016.06.026. Epub 2016 Jun 25.

Abstract

In diffusion governed by Fick's law, the diffusion coefficient represents the phenomenological material parameter and is, in general, a constant. In certain cases of diffusion through porous media, the diffusion coefficient can be variable (i.e. non-constant) due to the complex process of solute displacements within microstructure, since these displacements depend on porosity, internal microstructural geometry, size of the transported particles, chemical nature, and physical interactions between the diffusing substance and the microstructural surroundings. In order to provide a simple and general approach of determining the diffusion coefficient for diffusion through porous media, we have introduced mass release curves as the constitutive curves of diffusion. The mass release curve for a selected direction represents cumulative mass (per surface area) passed in that direction through a small reference volume, in terms of time. We have developed a methodology, based on numerical Finite Element (FE) and Molecular Dynamics (MD) methods, to determine simple mass release curves of solutes through complex media from which we calculate the diffusion coefficient. The diffusion models take into account interactions between solute particles and microstructural surfaces, as well as hydrophobicity (partitioning). We illustrate the effectiveness of our approach on several examples of complex composite media, including an imaging-based analysis of diffusion through pancreatic cancer tissue. The presented work offers an insight into the role of mass release curves in describing diffusion through porous media in general, and further in case of complex composite media such as biological tissue.

摘要

在菲克定律控制的扩散中,扩散系数代表了唯象的材料参数,通常是一个常数。在某些通过多孔介质的扩散情况下,由于溶质在微观结构内的复杂位移过程,扩散系数可以是变量(即非恒定的),因为这些位移取决于孔隙率、内部微观结构几何形状、传输粒子的大小、化学性质以及扩散物质与微观结构环境之间的物理相互作用。为了提供一种简单而通用的方法来确定通过多孔介质的扩散系数,我们引入了质量释放曲线作为扩散的本构曲线。选定方向的质量释放曲线代表通过小参考体积在该方向上传递的累积质量(单位表面积),以时间表示。我们开发了一种基于数值有限元(FE)和分子动力学(MD)方法的方法,从复杂介质中确定溶质的简单质量释放曲线,从中我们计算扩散系数。扩散模型考虑了溶质颗粒与微观结构表面之间的相互作用,以及疏水性(分配)。我们通过几个复杂复合介质的示例来说明我们方法的有效性,包括通过胰腺癌组织的扩散的基于成像的分析。所提出的工作深入了解了质量释放曲线在描述一般多孔介质中的扩散以及在复杂复合介质(如生物组织)中的扩散中的作用。

相似文献

9
Aquasols: on the role of secondary minima.水溶胶:关于二级极小值的作用
Environ Sci Technol. 2004 Nov 15;38(22):5915-24. doi: 10.1021/es049746d.

引用本文的文献

本文引用的文献

2
Mass partitioning effects in diffusion transport.扩散传输中的质量分配效应。
Phys Chem Chem Phys. 2015 Aug 28;17(32):20630-5. doi: 10.1039/c5cp02720a. Epub 2015 Jul 23.
5
Interfacial effects on nanoconfined diffusive mass transport regimes.纳米受限扩散传质的界面效应。
Phys Rev Lett. 2012 Jun 8;108(23):236102. doi: 10.1103/PhysRevLett.108.236102. Epub 2012 Jun 6.
7
Second-order modeling of arsenite transport in soils.土壤中亚砷酸盐传输的二阶建模。
J Contam Hydrol. 2011 Nov 1;126(3-4):121-9. doi: 10.1016/j.jconhyd.2011.08.002. Epub 2011 Aug 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验