Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX 77030, United States; Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia.
Comput Biol Med. 2018 Jan 1;92:156-167. doi: 10.1016/j.compbiomed.2016.06.026. Epub 2016 Jun 25.
In diffusion governed by Fick's law, the diffusion coefficient represents the phenomenological material parameter and is, in general, a constant. In certain cases of diffusion through porous media, the diffusion coefficient can be variable (i.e. non-constant) due to the complex process of solute displacements within microstructure, since these displacements depend on porosity, internal microstructural geometry, size of the transported particles, chemical nature, and physical interactions between the diffusing substance and the microstructural surroundings. In order to provide a simple and general approach of determining the diffusion coefficient for diffusion through porous media, we have introduced mass release curves as the constitutive curves of diffusion. The mass release curve for a selected direction represents cumulative mass (per surface area) passed in that direction through a small reference volume, in terms of time. We have developed a methodology, based on numerical Finite Element (FE) and Molecular Dynamics (MD) methods, to determine simple mass release curves of solutes through complex media from which we calculate the diffusion coefficient. The diffusion models take into account interactions between solute particles and microstructural surfaces, as well as hydrophobicity (partitioning). We illustrate the effectiveness of our approach on several examples of complex composite media, including an imaging-based analysis of diffusion through pancreatic cancer tissue. The presented work offers an insight into the role of mass release curves in describing diffusion through porous media in general, and further in case of complex composite media such as biological tissue.
在菲克定律控制的扩散中,扩散系数代表了唯象的材料参数,通常是一个常数。在某些通过多孔介质的扩散情况下,由于溶质在微观结构内的复杂位移过程,扩散系数可以是变量(即非恒定的),因为这些位移取决于孔隙率、内部微观结构几何形状、传输粒子的大小、化学性质以及扩散物质与微观结构环境之间的物理相互作用。为了提供一种简单而通用的方法来确定通过多孔介质的扩散系数,我们引入了质量释放曲线作为扩散的本构曲线。选定方向的质量释放曲线代表通过小参考体积在该方向上传递的累积质量(单位表面积),以时间表示。我们开发了一种基于数值有限元(FE)和分子动力学(MD)方法的方法,从复杂介质中确定溶质的简单质量释放曲线,从中我们计算扩散系数。扩散模型考虑了溶质颗粒与微观结构表面之间的相互作用,以及疏水性(分配)。我们通过几个复杂复合介质的示例来说明我们方法的有效性,包括通过胰腺癌组织的扩散的基于成像的分析。所提出的工作深入了解了质量释放曲线在描述一般多孔介质中的扩散以及在复杂复合介质(如生物组织)中的扩散中的作用。