Suppr超能文献

基于临床预测模型探索CLR和CPR在鉴别川崎病与其他传染病中的诊断价值。

Exploring the diagnostic value of CLR and CPR in differentiating Kawasaki disease from other infectious diseases based on clinical predictive modeling.

作者信息

Liao Jin-Wen, Guo Xin, Li Xu-Xia, Xian Jia-Ming, Chen Cheng, Xu Ming-Guo

机构信息

The Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China.

Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China.

出版信息

Front Pediatr. 2024 Feb 16;12:1345141. doi: 10.3389/fped.2024.1345141. eCollection 2024.

Abstract

BACKGROUND

Kawasaki disease (KD) is an important cause of acquired heart disease in children and adolescents worldwide. KD and infectious diseases can be easily confused when the clinical presentation is inadequate or atypical, leading to misdiagnosis or underdiagnosis of KD. In turn, misdiagnosis or underdiagnosis of KD can lead to delayed use of intravenous immunoglobulin (IVIG), increasing the risk of drug resistance and coronary artery lesions (CAL).

OBJECTIVES

The purpose of this study was to develop a predictive model for identifying KD and infectious diseases in children in the hope of helping pediatricians develop timely and accurate treatment plans.

METHODS

The data Patients diagnosed with KD from January 2018 to July 2022 in Shenzhen Longgang District Maternity & Child Healthcare Hospital, and children diagnosed with infectious diseases in the same period will be included in this study as controls. We collected demographic information, clinical presentation, and laboratory data on KD before receiving IVIG treatment. All statistical analyses were performed using R-4.2.1 (https://www.rproject.org/). Logistic regression and Least Absolute Shrinkage with Selection Operator (LASSO) regression analyses were used to build predictive models. Calibration curves and C-index were used to validate the accuracy of the prediction models.

RESULTS

A total of 1,377 children were enrolled in this study, 187 patients with KD were included in the KD group and 1,190 children with infectious diseases were included in the infected group. We identified 15 variables as independent risk factors for KD by LASSO analysis. Then by logistic regression we identified 7 variables for the construction of nomogram including white blood cell (WBC), Monocyte (MO), erythrocyte sedimentation rate (ESR), alanine transaminase (ALT), albumin (ALB), C-reactive protein to procalcitonin ratio (CPR) and C-reactive protein to lymphocyte ratio (CLR). The calibration curve and C-index of 0.969 (95% confidence interval: 0.960-0.978) validated the model accuracy.

CONCLUSION

Our predictive model can be used to discriminate KD from infectious diseases. Using this predictive model, it may be possible to provide an early determination of the use of IVIG and the application of antibiotics as soon as possible.

摘要

背景

川崎病(KD)是全球儿童和青少年后天性心脏病的重要病因。当临床表现不充分或不典型时,川崎病与传染病很容易混淆,导致川崎病的误诊或漏诊。反过来,川崎病的误诊或漏诊会导致静脉注射免疫球蛋白(IVIG)的使用延迟,增加耐药性和冠状动脉病变(CAL)的风险。

目的

本研究的目的是建立一个预测模型,用于识别儿童的川崎病和传染病,希望帮助儿科医生制定及时准确的治疗方案。

方法

将2018年1月至2022年7月在深圳龙岗区妇幼保健院诊断为川崎病的患者数据,以及同期诊断为传染病的儿童作为对照纳入本研究。我们收集了接受IVIG治疗前川崎病患者的人口统计学信息、临床表现和实验室数据。所有统计分析均使用R-4.2.1(https://www.rproject.org/)进行。采用逻辑回归和最小绝对收缩与选择算子(LASSO)回归分析建立预测模型。校准曲线和C指数用于验证预测模型的准确性。

结果

本研究共纳入1377名儿童,川崎病组包括187例川崎病患者,感染组包括1190例传染病儿童。通过LASSO分析,我们确定了15个变量为川崎病的独立危险因素。然后通过逻辑回归,我们确定了7个用于构建列线图的变量,包括白细胞(WBC)、单核细胞(MO)、红细胞沉降率(ESR)、谷丙转氨酶(ALT)、白蛋白(ALB)、C反应蛋白与降钙素原比值(CPR)和C反应蛋白与淋巴细胞比值(CLR)。校准曲线和C指数为0.969(95%置信区间:0.960-0.978)验证了模型的准确性。

结论

我们的预测模型可用于区分川崎病和传染病。使用该预测模型,可能能够尽早确定IVIG的使用和尽早应用抗生素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d550/10904529/0164af80080a/fped-12-1345141-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验