Akbarian-Saravi Niloofar, Basar Ibrahim Alper, Margoto Olivia Helena, Abdollahi G Nadia, Crawford Bryn, Magel Benjamin, Gharibnavaz Mehrdad, Eskicioglu Cigdem, Milani Abbas S
Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
Bioreactor Technology Group, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
ACS Omega. 2024 Feb 13;9(8):9256-9268. doi: 10.1021/acsomega.3c08301. eCollection 2024 Feb 27.
Biopolymer blends have attracted considerable attention in industrial applications due to their notable mechanical properties and biodegradability. This work delves into the innovative combination of butadiene-acrylonitrile (referred to as NBR) with a pectin-based biopolymer (NGP) at a 90:10 mass ratio through a detailed analysis employing mechanical characterization, Fourier transform infrared (FTIR) analysis, thermogravimetric analysis (TGA), and morphology studies using SEM. Additionally, biopolymer's biodegradability under aerobic and anaerobic conditions is tested. The study's findings underscore the superior tensile strength and elongation at break of the NGP/NBR blend in comparison to pure NBR, while also exhibiting a decrease in puncture resistance due to imperfect bonds at the particle-matrix interfaces, necessitating the use of a compatibilizer. In anaerobic conditions, evaluation of biodegradable properties reveals 2% and 12% biodegradability in NBR and NGP/NBR blend, respectively. The degradation properties were also aligned with TGA results highlighting a lower decomposition temperature for NGP. Additionally, this research integrates the application of a conditional value-at-risk (CVaR)-based analysis of the blend's tensile properties to evaluate the uncertainty impact in the experiment. Under risk, a significant enhancement in the tensile performance (by 80%) of the NGP/NBR blend was shown compared to pure NBR. Ultimately, the study shows that adding pectin to the NBR compound amplifies the overall performance of the biopolymer significantly under select criteria.
由于其显著的机械性能和生物降解性,生物聚合物共混物在工业应用中引起了相当大的关注。本研究通过机械表征、傅里叶变换红外光谱(FTIR)分析、热重分析(TGA)以及使用扫描电子显微镜(SEM)进行形态学研究等详细分析,深入探讨了丁二烯 - 丙烯腈(简称NBR)与果胶基生物聚合物(NGP)以90:10质量比的创新组合。此外,还测试了生物聚合物在好氧和厌氧条件下的生物降解性。研究结果强调,与纯NBR相比,NGP/NBR共混物具有更高的拉伸强度和断裂伸长率,同时由于颗粒 - 基体界面处的结合不完善,其抗穿刺性有所下降,因此需要使用增容剂。在厌氧条件下,对生物降解性能的评估显示,NBR和NGP/NBR共混物的生物降解率分别为2%和12%。降解性能也与TGA结果一致,突出了NGP较低的分解温度。此外,本研究还整合了基于条件风险价值(CVaR)的共混物拉伸性能分析,以评估实验中的不确定性影响。在风险条件下,与纯NBR相比,NGP/NBR共混物的拉伸性能显著提高(提高了80%)。最终,该研究表明,在NBR化合物中添加果胶在特定标准下能显著提高生物聚合物的整体性能。