Górnicka Karolina, Gui Xin, Chamorro Juan R, McQueen Tyrel M, Cava Robert J, Klimczuk Tomasz, Winiarski Michał J
Faculty of Applied Physics and Mathematics and Advanced Materials Centre, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States.
Chem Mater. 2024 Feb 15;36(4):1870-1879. doi: 10.1021/acs.chemmater.3c02398. eCollection 2024 Feb 27.
We report superconductivity in the full Heusler compound LiPdSi (space group , No. 225) at a critical temperature of = 1.3 K and a normalized heat capacity jump at , Δ/γ = 1.1. The low-temperature isothermal magnetization curves imply type-I superconductivity, as previously observed in LiPdGe. We show, based on density functional theory calculations and using the molecular orbital theory approach, that while LiPdSi and LiPdGe share the Pd cubic cage motif that is found in most of the reported Heusler superconductors, they show distinctive features in the electronic structure. This is due to the fact that Li occupies the site which, in other compounds, is filled with an early transition metal or a rare-earth metal. Thus, while a simple valence electron count-property relationship is useful in predicting and tuning Heusler materials, inclusion of the symmetry of interacting frontier orbitals is also necessary for the best understanding.
我们报道了全Heusler化合物LiPdSi(空间群,编号225)在临界温度(T_c = 1.3)K时的超导性,以及在(T_c)处归一化的比热跃变(\Delta C/\gamma = 1.1)。低温等温磁化曲线表明其为I型超导,正如之前在LiPdGe中所观察到的那样。基于密度泛函理论计算并使用分子轨道理论方法,我们表明,虽然LiPdSi和LiPdGe都具有在大多数已报道的Heusler超导化合物中发现的Pd立方笼结构单元,但它们在电子结构上表现出独特的特征。这是因为Li占据了在其他化合物中被早期过渡金属或稀土金属填充的位置。因此,虽然简单的价电子数 - 性质关系在预测和调控Heusler材料方面很有用,但为了获得最佳理解,还需要考虑相互作用的前沿轨道的对称性。