Suppr超能文献

基于机器学习利用快速定位图像预测前列腺MRI图像质量

Machine learning based prediction of image quality in prostate MRI using rapid localizer images.

作者信息

Al-Hayali Abdullah, Komeili Amin, Azad Azar, Sathiadoss Paul, Schieda Nicola, Ukwatta Eranga

机构信息

University of Guelph, School of Engineering, Guelph Imaging AI Lab, Guelph, Ontario, Canada.

University of Calgary, Department of Biomedical Engineering, Calgary, Alberta, Canada.

出版信息

J Med Imaging (Bellingham). 2024 Mar;11(2):026001. doi: 10.1117/1.JMI.11.2.026001. Epub 2024 Mar 1.

Abstract

PURPOSE

Diagnostic performance of prostate MRI depends on high-quality imaging. Prostate MRI quality is inversely proportional to the amount of rectal gas and distention. Early detection of poor-quality MRI may enable intervention to remove gas or exam rescheduling, saving time. We developed a machine learning based quality prediction of yet-to-be acquired MRI images solely based on MRI rapid localizer sequence, which can be acquired in a few seconds.

APPROACH

The dataset consists of 213 (147 for training and 64 for testing) prostate sagittal T2-weighted (T2W) MRI localizer images and rectal content, manually labeled by an expert radiologist. Each MRI localizer contains seven two-dimensional (2D) slices of the patient, accompanied by manual segmentations of rectum for each slice. Cascaded and end-to-end deep learning models were used to predict the quality of yet-to-be T2W, DWI, and apparent diffusion coefficient (ADC) MRI images. Predictions were compared to quality scores determined by the experts using area under the receiver operator characteristic curve and intra-class correlation coefficient.

RESULTS

In the test set of 64 patients, optimal versus suboptimal exams occurred in 95.3% (61/64) versus 4.7% (3/64) for T2W, 90.6% (58/64) versus 9.4% (6/64) for DWI, and 89.1% (57/64) versus 10.9% (7/64) for ADC. The best performing segmentation model was 2D U-Net with ResNet-34 encoder and ImageNet weights. The best performing classifier was the radiomics based classifier.

CONCLUSIONS

A radiomics based classifier applied to localizer images achieves accurate diagnosis of subsequent image quality for T2W, DWI, and ADC prostate MRI sequences.

摘要

目的

前列腺MRI的诊断性能取决于高质量成像。前列腺MRI质量与直肠气体量及扩张程度成反比。早期发现低质量MRI可促使进行干预以排出气体或重新安排检查时间,从而节省时间。我们开发了一种基于机器学习的质量预测方法,仅根据能在几秒内获取的MRI快速定位序列来预测尚未采集的MRI图像质量。

方法

数据集包括213幅(147幅用于训练,64幅用于测试)前列腺矢状位T2加权(T2W)MRI定位图像及直肠内容,由一名放射科专家手动标注。每个MRI定位图像包含患者的七张二维(2D)切片,并伴有每张切片直肠的手动分割。使用级联和端到端深度学习模型预测尚未采集的T2W、扩散加权成像(DWI)及表观扩散系数(ADC)MRI图像的质量。将预测结果与专家确定的质量评分进行比较,采用受试者操作特征曲线下面积和组内相关系数。

结果

在64例患者的测试集中,T2W图像的最佳与次优检查分别占95.3%(61/64)和4.7%(3/64),DWI图像分别占90.6%(58/64)和9.4%(6/64),ADC图像分别占89.1%(57/64)和10.9%(7/64)。表现最佳的分割模型是带有ResNet - 34编码器和ImageNet权重的2D U - Net。表现最佳的分类器是基于影像组学的分类器。

结论

应用于定位图像的基于影像组学的分类器能够准确诊断T2W、DWI和ADC前列腺MRI序列后续图像的质量。

相似文献

1
Machine learning based prediction of image quality in prostate MRI using rapid localizer images.
J Med Imaging (Bellingham). 2024 Mar;11(2):026001. doi: 10.1117/1.JMI.11.2.026001. Epub 2024 Mar 1.
5
The Effect of Image Resampling on the Performance of Radiomics-Based Artificial Intelligence in Multicenter Prostate MRI.
J Magn Reson Imaging. 2024 May;59(5):1800-1806. doi: 10.1002/jmri.28935. Epub 2023 Aug 12.
7
3.0 T prostate MRI: Visual assessment of 2D and 3D T2-weighted imaging sequences using PI-QUAL score.
Eur J Radiol. 2023 Sep;166:110974. doi: 10.1016/j.ejrad.2023.110974. Epub 2023 Jul 12.
8
MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts.
Acta Oncol. 2022 Feb;61(2):255-263. doi: 10.1080/0284186X.2021.2013530. Epub 2021 Dec 17.
9
[Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 Mar;52(2):311-318. doi: 10.12182/20210360202.

引用本文的文献

2
Insights into Radiology Publications.
Indian J Radiol Imaging. 2025 Jan 9;35(Suppl 1):S18-S29. doi: 10.1055/s-0044-1793914. eCollection 2025 Jan.

本文引用的文献

1
MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts.
Acta Oncol. 2022 Feb;61(2):255-263. doi: 10.1080/0284186X.2021.2013530. Epub 2021 Dec 17.
2
Preparation Strategies for Prostate MRI.
Can Assoc Radiol J. 2022 May;73(2):291-292. doi: 10.1177/08465371211039215. Epub 2021 Sep 22.
3
Comparison of 5 Rectal Preparation Strategies for Prostate MRI and Impact on Image Quality.
Can Assoc Radiol J. 2022 May;73(2):346-354. doi: 10.1177/08465371211033753. Epub 2021 Aug 17.
5
Understanding PI-QUAL for prostate MRI quality: a practical primer for radiologists.
Insights Imaging. 2021 May 1;12(1):59. doi: 10.1186/s13244-021-00996-6.
6
Impact of 18-French Rectal Tube Placement on Image Quality of Multiparametric Prostate MRI.
AJR Am J Roentgenol. 2021 Oct;217(4):919-920. doi: 10.2214/AJR.21.25732. Epub 2021 Apr 14.
7
The Biological Meaning of Radiomic Features.
Radiology. 2021 Mar;298(3):505-516. doi: 10.1148/radiol.2021202553. Epub 2021 Jan 5.
8
Influence of Enema and Dietary Restrictions on Prostate MR Image Quality: A Multireader Study.
Acad Radiol. 2022 Jan;29(1):4-14. doi: 10.1016/j.acra.2020.10.019. Epub 2020 Nov 6.
10
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验