van der Krabben Luc M, Gruginskie Natasha, van Eerden Maarten, van Gastel Jasper, Mulder Peter, Bauhuis Gerard J, Khusyainov Dinar, Afanasiev Dima, Vlieg Elias, Schermer John J
Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
ACS Appl Electron Mater. 2024 Feb 13;6(2):1483-1492. doi: 10.1021/acsaelm.3c01816. eCollection 2024 Feb 27.
III-V semiconductor light-emitting diodes (LEDs) are a promising candidate for demonstrating electroluminescent cooling. However, exceptionally high internal quantum efficiency designs are paramount to achieving this goal. A significant loss mechanism preventing unity internal quantum efficiency in GaAs-based devices is nonradiative surface recombination at the perimeter sidewall. To address this issue, an unconventional LED design is presented, in which the distance from the central current injection area to the device's perimeter is extended while maintaining a constant front contact grid size. This approach effectively moves the perimeter beyond the lateral spread of current at an operating current density of 10-10 A/cm. In p-i-n GaAs/InGaP double heterojunction LEDs fabricated with varying sizes and perimeter extensions, a 19% relative increase in external quantum efficiency is achieved by extending the perimeter-to-contact distance from 25 to 250 μm for a front contact grid size of 450 × 450 μm. Utilizing an in-house developed Photon Dynamics model, the corresponding relative increase in internal quantum efficiency is estimated to be 5%. These results are ascribed to a significant reduction in perimeter recombination due to a lower perimeter-to-surface area (P/A) ratio. However, in contrast to lowering the P/A ratio by increasing the front contact grid size of LEDs, the present method enables these improvements without affecting the required maximum current density in the microscopic active LED area under the front contact grid. These findings aid in the advancement of electroluminescent cooling in LEDs and could prove useful in other dedicated semiconductor devices where perimeter recombination is limiting.
III-V族半导体发光二极管(LED)是实现电致发光冷却的一个有前景的候选方案。然而,要实现这一目标,极高的内部量子效率设计至关重要。在基于GaAs的器件中,阻止实现单位内部量子效率的一个重要损耗机制是周边侧壁处的非辐射表面复合。为解决这个问题,本文提出了一种非常规的LED设计,其中从中心电流注入区域到器件周边的距离被延长,同时保持正面接触栅格尺寸不变。这种方法有效地将周边移到了在10 - 10 A/cm的工作电流密度下电流的横向扩展范围之外。在制造的具有不同尺寸和周边扩展的p-i-n GaAs/InGaP双异质结LED中,对于450×450μm的正面接触栅格尺寸,通过将周边到接触的距离从25μm延长到250μm,实现了外部量子效率19%的相对增加。利用内部开发的光子动力学模型,估计内部量子效率的相应相对增加为5%。这些结果归因于由于较低的周边与表面积(P/A)比导致的周边复合的显著减少。然而,与通过增加LED的正面接触栅格尺寸来降低P/A比不同,本方法在不影响正面接触栅格下微观有源LED区域所需的最大电流密度的情况下实现了这些改进。这些发现有助于推动LED中的电致发光冷却,并且可能在周边复合受限的其他专用半导体器件中有用。