Suppr超能文献

毫米级砷化镓光伏中的红外能量收集

Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.

作者信息

Moon Eunseong, Blaauw David, Phillips Jamie D

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA.

出版信息

IEEE Trans Electron Devices. 2017 Nov;64(11):4554-4560. doi: 10.1109/TED.2017.2746094. Epub 2017 Sep 6.

Abstract

The design and characterization of mm-scale GaAs photovoltaic cells are presented and demonstrate highly efficient energy harvesting in the near infrared. Device performance is improved dramatically by optimization of the device structure for the near-infrared spectral region and improving surface and sidewall passivation with ammonium sulfide treatment and subsequent silicon nitride deposition. The power conversion efficiency of a 6.4 mm cell under 660 nW/mm NIR illumination at 850 nm is greater than 30 %, which is higher than commercial crystalline silicon solar cells under similar illumination conditions. Critical performance limiting factors of sub-mm scale GaAs photovoltaic cells are addressed and compared to theoretical calculations.

摘要

介绍了毫米级砷化镓光伏电池的设计与特性,其展示了在近红外区域高效的能量收集。通过针对近红外光谱区域优化器件结构,并采用硫化铵处理及随后的氮化硅沉积来改善表面和侧壁钝化,器件性能得到显著提升。一个6.4毫米的电池在850纳米波长、660纳瓦/平方毫米的近红外光照下,功率转换效率大于30%,这高于在类似光照条件下的商用晶体硅太阳能电池。文中讨论了亚毫米级砷化镓光伏电池关键的性能限制因素,并与理论计算结果进行了比较。

相似文献

1
Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.
IEEE Trans Electron Devices. 2017 Nov;64(11):4554-4560. doi: 10.1109/TED.2017.2746094. Epub 2017 Sep 6.
2
Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
IEEE Trans Electron Devices. 2017 May;64(5):2432-2437. doi: 10.1109/TED.2017.2681694. Epub 2017 Mar 27.
3
High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20454-9. doi: 10.1021/acsami.5b06452. Epub 2015 Sep 1.
4
Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
IEEE Trans Electron Devices. 2017 Jan;64(1):15-20. doi: 10.1109/TED.2016.2626246. Epub 2016 Nov 17.
5
Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
IEEE Trans Electron Devices. 2016 Jul;63(7):2820-2825. doi: 10.1109/TED.2016.2569079.
6
Silicon nitride grating based planar spectral splitting concentrator for NIR light harvesting.
Opt Express. 2020 Jul 20;28(15):21474-21480. doi: 10.1364/OE.390666.
7
Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
IEEE J Photovolt. 2020 Nov;10(6):1721-1726. doi: 10.1109/JPHOTOV.2020.3025450. Epub 2020 Oct 5.
8
Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
ACS Nano. 2017 Jan 24;11(1):992-999. doi: 10.1021/acsnano.6b07605. Epub 2017 Jan 11.
9
High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
ACS Nano. 2015 Oct 27;9(10):10356-65. doi: 10.1021/acsnano.5b05585. Epub 2015 Sep 16.
10
High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
Prog Photovolt. 2019 Jun;27(6):540-546. doi: 10.1002/pip.3132. Epub 2019 Mar 28.

引用本文的文献

1
Wireless, passive inductor-capacitor sensors for biomedical applications.
Med X. 2025;3(1):16. doi: 10.1007/s44258-025-00060-8. Epub 2025 Aug 21.
2
Reduced Surface Recombination in Extended-Perimeter LEDs toward Electroluminescent Cooling.
ACS Appl Electron Mater. 2024 Feb 13;6(2):1483-1492. doi: 10.1021/acsaelm.3c01816. eCollection 2024 Feb 27.
3
Bridging the"Last Millimeter" Gap of Brain-Machine Interfaces via Near-Infrared Wireless Power Transfer and Data Communications.
ACS Photonics. 2021 May 19;8(5):1430-1438. doi: 10.1021/acsphotonics.1c00160. Epub 2021 Apr 20.
4
High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
Prog Photovolt. 2019 Jun;27(6):540-546. doi: 10.1002/pip.3132. Epub 2019 Mar 28.
5
Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
IEEE J Photovolt. 2020 Nov;10(6):1721-1726. doi: 10.1109/JPHOTOV.2020.3025450. Epub 2020 Oct 5.

本文引用的文献

1
Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
IEEE Trans Electron Devices. 2017 Jan;64(1):15-20. doi: 10.1109/TED.2016.2626246. Epub 2016 Nov 17.
2
Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
IEEE Trans Electron Devices. 2017 May;64(5):2432-2437. doi: 10.1109/TED.2017.2681694. Epub 2017 Mar 27.
3
Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
IEEE Trans Electron Devices. 2016 Jul;63(7):2820-2825. doi: 10.1109/TED.2016.2569079.
4
Subdermal Flexible Solar Cell Arrays for Powering Medical Electronic Implants.
Adv Healthc Mater. 2016 Jul;5(13):1572-80. doi: 10.1002/adhm.201600222. Epub 2016 May 3.
5
Bioresorbable silicon electronic sensors for the brain.
Nature. 2016 Feb 4;530(7588):71-6. doi: 10.1038/nature16492. Epub 2016 Jan 18.
6
The first batteryless, solar-powered cardiac pacemaker.
Heart Rhythm. 2015 Jun;12(6):1317-23. doi: 10.1016/j.hrthm.2015.02.032. Epub 2015 Mar 2.
8
Energy harvesting for the implantable biomedical devices: issues and challenges.
Biomed Eng Online. 2014 Jun 20;13:79. doi: 10.1186/1475-925X-13-79.
9
GaAs nanopillar-array solar cells employing in situ surface passivation.
Nat Commun. 2013;4:1497. doi: 10.1038/ncomms2509.
10
Electrical and optical characterization of surface passivation in GaAs nanowires.
Nano Lett. 2012 Sep 12;12(9):4484-9. doi: 10.1021/nl301391h. Epub 2012 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验